Green tea catechin EGCG is able to partially restore the regulation of muscle contraction by the troponin-tropomyosin complex, impaired by the Glu150Ala substitution in γ-tropomyosin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A number of point mutations has been identified in the genes of contractile and regulatory proteins of skeletal muscle that can lead to dysfunction of muscle tissue. The molecular mechanisms of muscle contraction in the presence of mutant muscle proteins in the sarcomere remain poorly understood. In the current study, we examined the impact of the glutamate-to-alanine substitution at position 150 (Glu150Ala) of γ-tropomyosin associated with cap disease and fiber-type disproportion in humans on the molecular mechanisms of troponin-tropomyosin-related regulation of muscle contraction in a single muscle fiber. It is believed that tropomyosin residue Glu150 is not directly involved in the interaction of tropomyosin with actin and myosin interactions; however, according to structural models of thin filaments under low Ca2+ conditions, this residue is located close to site of binding with the C-terminal domain of troponin I. To assess the performance of myosin heads in the presence of Glu150Ala mutant tropomyosin, we measured the polarized fluorescence of 1,5-IAEDANS probe bound to the SH1-helix of myosin. The obtained results indicate an abnormal increase in the number of myosin heads strongly bound to actin during relaxation of muscle fibres containing Glu150Ala mutant tropomyosin. It has been shown that the green tea catechin epigallocatechin gallate (EGCG), known as a modulator of troponin function, inhibits the premature transition of myosin heads into a state of strong actin binding, and thus weakens the damaging effect of the mutation. However, EGCG does not completely restore the effective behavior of myosin cross-bridges during the ATPase cycle.

Full Text

Restricted Access

About the authors

M. V. Tishkova

Institute of Cytology of the Russian Academy of Sciences

Author for correspondence.
Email: mariiatiskova@gmail.com
Russian Federation, Saint Petersburg, 194064

O. E. Karpicheva

Institute of Cytology of the Russian Academy of Sciences; Boston University

Email: mariiatiskova@gmail.com
Russian Federation, Saint Petersburg, 194064; Boston, 02118, MA, USA

Yu. S. Borovikov

Institute of Cytology of the Russian Academy of Sciences

Email: mariiatiskova@gmail.com
Russian Federation, Saint Petersburg, 194064

S. V. Avrova

Institute of Cytology of the Russian Academy of Sciences

Email: mariiatiskova@gmail.com
Russian Federation, Saint Petersburg, 194064

References

  1. Borejdo J., Putnam S. 1977. Polarization of fluorescence from single skinned glycerinated rabbit psoas fibers in rigor and relaxation. Biochim. Biophys. Acta. V. 459. P. 578. https://doi.org/10.1016/0005-2728(77)90056-1
  2. Borovikov Y.S., Gusev N.B. 1983. Effect of troponin-tropomyosin complex and Ca2+ on conformational changes in F-actin induced by myosin subfragment-1. Eur. J. Biochem. V. 136. P. 363. https://doi.org/10.1111/j.1432-1033.1983.tb07750.x
  3. Borovikov Y.S. 1999. Conformational changes of contractile proteins and their role in muscle contraction. Int. Rev. Cytol. V. 189. Art. ID 267. https://doi.org/10.1016/S0074-7696(08)61389-3
  4. Borovikov Y.S., Dedova I.V., dos Remedios C.G., Vikhoreva N.N., Vikhorev P.G., Avrova S.V., Hazlett T.L., Van Der Meer B.W. 2004. Fluorescence depolarization of actin filaments in reconstructed myofibers: the effect of S1 or pPDM-S1 on movements of distinct areas of actin. Biophys. J. V. 86. P. 3020. https://doi.org/10.1016/S0006-3495(04)74351-9
  5. Borovikov Y.S., Karpicheva O.E., Avrova S.V., Redwood C.S. 2009. Modulation of the effects of tropomyosin on actin and myosin conformational changes by troponin and Ca2+. Biochim. Biophys. Acta. V. 1794. P. 985. https://doi.org/10.1016/j.bbapap.2008.11.014
  6. Borovikov Y.S., Karpicheva O.E., Avrova S.V., Robinson P., Redwood C.S. 2009. The effect of the dilated cardiomyopathy-causing mutation Glu54Lys of alpha-tropomyosin on actin-myosin interactions during the ATPase cycle. Arch. Biochem. Biophys. V. 489. P. 20. https://doi.org/10.1016/j.abb.2009.07.018
  7. Borovikov Y.S., Avrova S.V., Rysev N.A., Sirenko V.V., Simonyan A.O., Chernev A.A., Karpicheva O.E., Piers A., Redwood C.S. 2015. Aberrant movement of β-tropomyosin associated with congenital myopathy causes defective response of myosin heads and actin during the ATPase cycle. Arch. Biochem. Biophys. V. 577. P. 11. https://doi.org/10.1016/j.abb.2015.05.002
  8. Borovikov Y.S., Karpicheva O.E., Simonyan A.O., Avrova S.V., Rogozovets E.A., Sirenko V.V., Redwood C.S. 2018. The primary causes of muscle dysfunction associated with the point mutations in Tpm3.12; conformational analysis of mutant proteins as a tool for classification of myopathies. Int. J. Mol. Sci. V. 19. Art. ID 3975. https://doi.org/10.3390/ijms19123975
  9. Borovikov Y.S., Rysev N.A., Karpicheva O.E., Sirenko V.V., Avrova S.V., Piers A., Redwood C.S. 2017. Molecular mechanisms of dysfunction of muscle fibres associated with Glu139 deletion in TPM2 gene. Sci. Rep. V. 7. Art. ID 16797. https://doi.org/10.1038/s41598-017-17076-9
  10. Botten D., Fugallo G., Fraternali F., Molteni C. 2013. A computational exploration of the interactions of the green tea polyphenol (-)-Epigallocatechin 3-Gallate with cardiac muscle troponin C. PLoS One. V. 8. https://doi.org/10.1371/journal.pone.0070556
  11. Chakrawarti L., Agrawal R., Dang S., Gupta S., Gabrani R. 2016. Therapeutic effects of EGCG: a patent review. Expert. Opin. Ther. Pat. V. 26. P. 907. https://doi.org/10.1080/13543776.2016.1203419
  12. Claassen W.J., Baelde R.J., Galli R.A., de Winter J.M., Ottenheijm C.A.C. 2023. Small molecule drugs to improve sarcomere function in those with acquired and inherited myopathies. Am. J. Physiol. Cell. Physiol. V. 325. P. 60. https://doi.org/10.1152/ajpcell.00047.2023
  13. Clarke N.F. 2011. Congenital fiber-type disproportion. Semin. Pediatr. Neurol. V. 18. P. 264. https://doi.org/10.1016/j.spen.2011.10.008
  14. Gordon A.M., Homsher E., Regnier M. 2000. Regulation of contraction in striated muscle. Physiol. Rev. V. 80. P. 853. https://doi.org/10.1152/physrev.2000.80.2.853
  15. Hassoun R., Budde H., Mannherz H.G., Lódi M., Fujita-Becker S., Laser K.T., Gärtner A., Klingel K., Möhner D., Stehle R., Sultana I., Schaaf T., Majchrzak M., Krause V., Herrmann C. et al. 2021. De novo missense mutations in TNNC1 and TNNI3 causing severe infantile cardiomyopathy affect myofilament structure and function and are modulated by troponin targeting agents. Int. J. Mol. Sci. V. 22. Art. ID 9625. https://doi.org/10.3390/ijms22179625
  16. Hsu P.J., Wang H.D., Tseng Y.C., Pan S.W., Sampurna B.P., Jong Y.J., Yuh C.H. 2021. L-Carnitine ameliorates congenital myopathy in a tropomyosin 3 de novo mutation transgenic zebrafish. J. Biomed. Sci. V. 28. P. 8. https://doi.org/10.1186/s12929-020-00707-1
  17. Kakol I., Borovikov Y.S., Szczesna D., Kirillina V.P., Levitsky D.I. 1987. Conformational changes of F-actin in myosin-free ghost single fiber induced by either phosphorylated or dephosphorylated heavy meromyosin. Biochim. Biophys. Acta. V. 913. P. 1. https://doi.org/10.1016/0167-4838(87)90225-1
  18. Karpicheva O.E., Simonyan A.O., Kuleva N.V., Redwood C.S., Borovikov Y.S. 2016. Myopathy-causing Q147P TPM2 mutation shifts tropomyosin strands further towards the open position and increases the proportion of strong-binding cross-bridges during the ATPase cycle. Biochim. Biophys. Acta. V. 1864. P. 260. https://doi.org/10.1016/j.bbapap.2015.12.004
  19. Lehman W., Rynkiewicz M.J. 2023. Troponin-I-induced tropomyosin pivoting defines thin-filament function in relaxed and active muscle. J. Gen. Physiol. V. 155. https://doi.org/10.1085/jgp.202313387
  20. Llinas P., Isabet T., Song L., Ropars V., Zong B., Benisty H., Sirigu S., Morris C., Kikuti C., Safer D., Sweeney H.L., Houdusse A. 2015. How actin initiates the motor activity of Myosin. Dev. Cell. V. 33. P. 401. https://doi.org/10.1085/jgp.202313387
  21. Lorenz M., Poole K.J.V., Popp D., Rosenbaum G., Holmes K.C. 1995. An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels. J. Mol. Biol. V. 246. P. 108. https://doi.org/10.1006/jmbi.1994.0070
  22. Malfatti E., Lehtokari V.L., Böhm J., De Winter J.M., Schäffer U., Estournet B., Quijano-Roy S., Monges S., Lubieniecki F., Bellance R., Viou M.T., Madelaine A., Wu B., Taratuto A.L., Eymard B. et al. 2014. Muscle histopathology in nebulin-related nemaline myopathy: ultrastrastructural findings correlated to disease severity and genotype. Acta Neuropathol. Commun. V. 2. P. 44. https://doi.org/10.1186/2051-5960-2-44
  23. Margossian S., Lowey S. 1982. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol. V. 85. P. 55. https://doi.org/10.1016/0076-6879(82)85009-X
  24. Matyushenko A.M., Nefedova V.V., Shchepkin D.V., Kopylova G.V., Berg V.Y., Pivovarova A.V., Kleymenov S.Y., Bershitsky S.Y., Levitsky D.I. 2020. Mechanisms of disturbance of the contractile function of slow skeletal muscles induced by myopathic mutations in the tropomyosin TPM3 gene. FASEB J. V. 34. Art. ID 13507. https://doi.org/10.1096/fj.202001318R
  25. Marston S., Memo M., Messer A., Papadaki M., Nowak K., McNamara E., Ong R., El-Mezgueldi M., Li X., Lehman W. 2013. Mutations in repeating structural motifs of tropomyosin cause gain of function in skeletal muscle myopathy patients. Hum. Mol. Genet. V. 22. P. 4978. https://doi.org/10.1093/hmg/ddt345
  26. Marttila M., Lemola E., Wallefeld W., Memo M., Donner K., Laing N.G., Marston S., Grönholm M., Wallgren-Pettersson C. 2012. Abnormal actin binding of aberrant β-tropomyosins is a molecular cause of muscle weakness in TPM2-related nemaline and cap myopathy. Biochem J. V. 442. P. 231. https://doi.org/10.1042/BJ20111030
  27. Moore J.R., Campbell S.G., Lehman W. 2016. Structural determinants of muscle thin filament cooperativity. Arch. Biochem. Biophys. V. 594. P. 8. https://doi.org/10.1016/j.abb.2016.02.016
  28. Moraczewska J. 2020. Thin filament dysfunctions caused by mutations in tropomyosin Tpm3. 12 and Tpm1. J. Muscle Res. Cell Motil. V. 41. P. 39. https://doi.org/10.1007/s10974-019-09532-y
  29. North K.N., Wang C.H., Clarke N., Jungbluth H., Vainzof M., Dowling J.J., Amburgey K., Quijano-Roy S., Beggs A.H., Sewry C., Laing N.G., Bönnemann C.G. 2014. Approach to the diagnosis of congenital myopathies. Neuromuscul. Disord. V. 24. P. 97. https://doi.org/10.1016/j.nmd.2013.11.003
  30. Okamoto Y., Sekine T. 1985. A streamlined method of subfragment one preparation from myosin. J. Biochem. V. 98. P. 1143. https://doi.org/10.1093/oxfordjournals.jbchem.a135365
  31. Oosawa F., Fujime S., Ishiwata S. I., Mihashi K. 1973. Dynamic property of F-actin and thin filament. Cold Spring Harbor Symposia on Quantitative Biology. V. 37. P. 277. 10.1101/SQB.1973.037.01.038' target='_blank'>https://doi: 10.1101/SQB.1973.037.01.038
  32. Popp D., Maeda Y., Stewart A. A., Holmes K. C. 1991. X-ray diffraction studies on muscle regulation. Adv. Biophys. V. 27. P. 89. 10.1016/0065-227x(91)90010-b' target='_blank'>https://doi: 10.1016/0065-227x(91)90010-b
  33. Potter J.D. 1982. Preparation of troponin and its subunits. Methods Enzymol. V. 85. P. 241. https://doi.org/10.1016/0076-6879(82)85024-6
  34. Roopnarine O., Thomas D.D. 1996. Orientation of intermediate nucleotide states of indane dione spin-labeled myosin heads in muscle fibers. Biophys. J. V. 70. P. 2795. https://doi.org/10.1016/S0006-3495(96)79849-1
  35. Sakuma A., Kimura-Sakiyama C., Onoue A., Shitaka Y., Kusakabe T., Miki M. 2006. The second half of the fourth period of tropomyosin is a key region for Ca(2+)-dependent regulation of striated muscle thin filaments. Biochemistry. V. 45. P. 9550. https://doi.org/10.1021/bi060963w
  36. Sewry C.A., Wallgren‐Pettersson C. 2017. Myopathology in congenital myopathies. Neuropathol. Appl. Neurobiol. V. 43. P. 5. https://doi.org/10.1111/nan.12369
  37. Spudich J.A., Watt S. 1971. The regulation of rabbit skeletal muscle contraction. J. Biol. Chem. V. 246. P. 4866. https://doi.org/10.1016/S0021-9258(18)62016-2
  38. Tadano N., Du C.K., Yumoto F., Morimoto S., Ohta M., Xie M.F., Nagata K., Zhan D.Y., Lu Q.W., Miwa Y., Takahashi-Yanaga F., Tanokura M., Ohtsuki I., Sasaguri T. 2010. Biological actions of green tea catechins on cardiac troponin C. Br. J. Pharmacol. V. 161. P. 1034. https://doi.org/10.1111/j.1476-5381.2010.00942.x
  39. Vibert P., Craig R., Lehman W. 1997. Steric-model for activation of muscle thin filaments. J. Mol. Biol. V. 266. P. 8. https://doi.org/10.1006/jmbi.1996.0800
  40. Yanagida T., Oosawa F. 1978. Polarized fluorescence from epsilon-ADP incorporated into F-actin in a myosin-free single fiber: Conformation of F-actin and changes induced in it by heavy meromyosin. J. Mol. Biol. V. 126. P. 507. https://doi.org/10.1016/0022-2836(78)90056-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Control electrophoregram of Glu150Ala-mutant tropomyosin (Glu150Ala Tpm) binding to actin. Myosin and regulatory proteins were extracted from muscle fibers (track 1) to produce shadow fibers, the thin filaments of which were reconstructed by tropomyosin (track 3), and then by troponin. Isolated tropomyosin and actin are shown in tracks 2 and 4, respectively.

Download (92KB)
3. Fig. 2. The effect of Glu150Ala substitution in tropomyosin on the orientation angle of the ΦE S1-AEDANS radiation dipoles in muscle fibers containing adjustable thin filaments in the absence and presence of the EGCG troponin inhibitor. Measurements were performed at low (10-8 M) and high (10-5 M) concentrations of Ca2 ions in the absence of nucleotides (+ Troponin) and in the presence of ADP and ATP. Changes in PH values between muscle fibers containing wild-type tropomyosin (WT-tropomyosin) and tropomyosin with Glu150Ala substitution (Glu150Ala-tropomyosin) (*), as well as between muscle fibers containing tropomyosin with Glu150Ala substitution in the absence and in the presence of EGCG (#) were significant at P < 0.05.

Download (74KB)
4. Fig. 3. Effect of Glu150Ala substitution in tropomyosin on the number of disoriented 1.5-IAEDANS fluorophores associated with the myosin(N) SH1 helix in muscle fibers containing regulated thin filaments in the absence and presence of the EGCG troponin inhibitor. The measurements were performed at low (10-8 M) and high (10-5 M) concentrations of Ca2 ions in the absence of nucleotides (+ Troponin) and in the presence of ADP and ATP. Changes in N values between muscle fibers containing wild-type tropomyosin (WT-tropomyosin) and tropomyosin with Glu150Ala substitution (Glu150Ala-tropomyosin) (*), as well as between muscle fibers containing tropomyosin with Glu150Ala substitution in the absence and in the presence of EGCG (#) are significant at P < 0.05.

Download (92KB)

Copyright (c) 2024 Russian Academy of Sciences