The Dual Effect of Lithium Chloride on the Efficiency of Generating Mouse-Induced Pluripotent Stem Cells

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) using certain factors. The low efficiency of the reprogramming, as well as the heterogeneity of iPSCs, limits the potential application for iPSCs in cell therapy. Here, we show that lithium chloride (LiCl), a known activator of the Wnt signaling pathway, reduces or enhances the efficiency of iPSC generation from mouse embryonic fibroblasts (MEFs) depending on the timing of its addition during the reprogramming. Our results not only demonstrate a method to improve the efficiency of iPSC formation by LiCL, but also indicate its dual role in this process.

作者简介

A. Kuznetsov

Institute of Cytology RAS

编辑信件的主要联系方式.
Email: atsimokha@incras.ru
俄罗斯联邦, St. Petersburg

E. Skvortsova

Institute of Cytology RAS

Email: atsimokha@incras.ru
俄罗斯联邦, St. Petersburg

A. Tomilin

Institute of Cytology RAS

Email: atsimokha@incras.ru
俄罗斯联邦, St. Petersburg

A. Tsimokha

Institute of Cytology RAS

Email: atsimokha@incras.ru
俄罗斯联邦, St. Petersburg

参考

  1. Гордеев М. Н., Бахмет Е. И., Томилин А. Н. 2021. Динамика плюрипотентности в эмбриогенезе и в культуре. Онтогенез. V. 52. P. 429. (Gordeev M. N., Bakhmet E. I., Tomilin A. N. 2021. Pluripotency dynamics during embryogenesis and in cell culture. Russ. J. Dev. Biol. V. 52. P. 379.)
  2. Carey B. W., Markoulaki S., Hanna J., Saha K., Gao Q., Mitalipova M., Jaenisch R. 2009. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc. Natl. Acad. Sci. V. 106. P. 157.
  3. Chen J., Liu J., Chen Y., Yang J., Chen J., Liu H., Zhao X., Mo K., Song H., Guo L. 2011. Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics. Cell Res. V. 21. P. 884.
  4. David L., Polo J. M. 2014. Phases of reprogramming. Stem Cell Res. V. 12. P. 754.
  5. Durkin M. E., Qian X., Popescu N. C., Lowy D. R. 2013. Isolation of mouse embryo fibroblasts. Bio-protocol. V. 3. P. e908.
  6. Esteban M. A., Wang T., Qin B., Yang J., Qin D., Cai J., Li W., Weng Z., Chen J., Ni S. 2010. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell. V. 6. P. 71.
  7. Evans M. J., Kaufman M. H. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature. V. 292. P. 154.
  8. Guan J., Wang G., Wang J., Zhang Z., Fu Y., Cheng L., Meng G., Lyu Y., Zhu J., Li Y. 2022. Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature. V. 605. P. 325.
  9. Ho R., Papp B., Hoffman J. A., Merrill B. J., Plath K. 2013. Stage-specific regulation of reprogramming to induced pluripotent stem cells by Wnt signaling and T cell factor proteins. Cell Rep. V. 3. P. 2113.
  10. https://doi.org/10.1016/j.celrep.2013.05.015
  11. Hong K. 2015. Cellular reprogramming and its application in regenerative medicine. Tiss. Eng. Regen. Med. V. 12. P. 80.
  12. Hou P., Li Y., Zhang X., Liu C., Guan J., Li H., Zhao T., Ye J., Yang W., Liu K. 2013. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. V. 341. P. 651.
  13. Jope R. S. 2003. Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharm. Sci. V. 24. P. 441.
  14. Niwa H., Ogawa K., Shimosato D., Adachi K. 2009. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. V. 460. P. 118.
  15. Okada M., Oka M., Yoneda Y. 2010. Effective culture conditions for the induction of pluripotent stem cells. Biochim. Biophys. Acta (BBA)-General Subjects. V. 1800. P. 956.
  16. Osete J. R., Akkouh I. A., de Assis D. R., Szabo A., Frei E., Hughes T., Smeland O. B., Steen N. E., Andreassen O. A., Djurovic S. 2021. Lithium increases mitochondrial respiration in iPSC-derived neural precursor cells from lithium responders. Mol. Psych. V. 26. P. 6789.
  17. Sato N., Meijer L., Skaltsounis L., Greengard P., Brivanlou A. H. 2004. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. V. 10. P. 55.
  18. Skvortsova E. V., Nazarov I. B., Tomilin A. N., Sinenko S. A. 2022. Dual mode of mitochondrial ROS action during reprogramming to pluripotency. Int. J. Mol. Sci. V. 23: 10924.
  19. Skvortsova E. V., Sinenko S. A., Tomilin A. N. 2018. Immortalized murine fibroblast cell lines are refractory to reprogramming to pluripotent state. Oncotarget. V. 9: 35241.
  20. Somers A., Jean J.-C., Sommer C. A., Omari A., Ford C. C., Mills J. A., Ying L., Sommer A. G., Jean J. M., Smith B. W. 2010. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells. V. 28. P. 1728.
  21. Takahashi K., Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. V. 126. P. 663.
  22. Wang Q., Xu X., Li J., Liu J., Gu H., Zhang R., Chen J., Kuang Y., Fei J., Jiang C. 2011. Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Res. V. 21. P. 1424.
  23. Wiznerowicz M., Trono D. 2003. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J. Virol. V. 77. P. 8957.
  24. Yamanaka S. 2020. Pluripotent stem cell-based cell therapy — promise and challenges. Cell Stem Cell. V. 27. P. 523.
  25. Ying Q.-L., Wray J., Nichols J., Batlle-Morera L., Doble B., Woodgett J., Cohen P., Smith A. 2008. The ground state of embryonic stem cell self-renewal. Nature. V. 453. P. 519.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024