Ordered mesoporous silica in modern versions of solid-phase extraction
- Authors: Zavalyueva A.S.1, Karpov S.I.1, Zatonskaya N.A.1, Selemenev V.F.1
-
Affiliations:
- Voronezh State University
- Issue: Vol 80, No 1 (2025)
- Pages: 3-21
- Section: REVIEWS
- Submitted: 28.05.2025
- URL: https://rjonco.com/0044-4502/article/view/680885
- DOI: https://doi.org/10.31857/S0044450225010011
- EDN: https://elibrary.ru/soktac
- ID: 680885
Cite item
Abstract
The review systematizes information on nanostructured materials used in solid-phase extraction (SPE) and its modern versions. The main attention is paid to the consideration of nanostructured analogues of MCM-41 and SBA-15 both in classical SPE and in modern versions of solid-phase microextraction, microextraction by matrix solid-phase dispersion, dispersive solid-phase extraction, and magnetic SPE. The use of silica with a hexagonal and cubic mesophase structure makes it possible to significantly increase the completeness of analyte extraction, improve the metrological characteristics of determining both metal ions and biologically active substances in complex multicomponent matrices of real objects of analysis. An abnormally high surface area (up to 1000 m2/g and more), adjustable mesopore size, ease of modification by grafting functional groups allow to significantly increase the selectivity of solid-phase materials compared to traditionally used silica gels and polymer ion exchangers. The advantages of ordered silica when used at the stage of extraction and concentration of analytes in solid-phase extraction options, as well as chromatographic separation of substances similar in nature, make it possible to expand the range of linearity of the analytical signal response of the analysis methods used, and the detection limits of ions and molecules can be reduced to the level of ng/mL, ng/g.
Full Text

About the authors
A. S. Zavalyueva
Voronezh State University
Author for correspondence.
Email: a-kh-01@yandex.ru
Russian Federation, 1, University Square, Voronezh, 394018
S. I. Karpov
Voronezh State University
Email: karsiv@mail.ru
Russian Federation, 1, University Square, Voronezh, 394018
N. A. Zatonskaya
Voronezh State University
Email: a-kh-01@yandex.ru
Russian Federation, 1, University Square, Voronezh, 394018
V. F. Selemenev
Voronezh State University
Email: a-kh-01@yandex.ru
Russian Federation, 1, University Square, Voronezh, 394018
References
- Федотов П.С., Малофеева Г.И., Савонина Е.Ю., Спиваков Б.Я. Твердофазная экстракция органических веществ: нетрадиционные методы и подходы // Журн. аналит. химии. 2019. Т. 74. № 3. С. 163. https://doi.org/10.1134/s0044450219030046 (Fedotov P.S., Malofeeva G.I., Savonina E.Y., Spivakov B.Y. Solid-phase extraction of organic substances: unconventional methods and approaches // J. Anal. Chem. 2019. V. 74. № 3. P. 205. https://doi.org/10.1134/S1061934819030043)
- Зайцев В.Н., Зуй М.Ф. Твердофазное микроэкстракционное концентрирование // Журн. аналит. химии. 2014. Т. 69. № 8. С. 787. https://doi.org/10.7868/s0044450214080131 (Zaitsev V.N., Zui M.F. Preconcentration by solid-phase microextraction // J. Anal. Chem. 2014. V. 69. № 3. P. 715. https://doi.org/10.1134/S1061934814080139)
- Khezeli T., Daneshfar A. Development of dispersive micro-solid phase extraction based on micro and nano sorbents // Trends Anal. Chem. 2017. V. 89. P. 99. https://doi.org/10.1016/j.trac.2017.01.004
- Capriotti A.L., Cavaliere C., Foglia P., Samperi R., Stampachiacchiere S., Ventura S., Laganà A. Recent advances and developments in matrix solid-phase dispersion // Trends Anal. Chem. 2015. V. 71. P. 186. https://doi.org/10.1016/j.trac.2015.03.012
- Elattar R.H., Kamal E.-D. A. Porous material-based QuEchERS: Exploring new horizons in sample preparation // Trends Anal. Chem. 2024. V. 172. Article 117571. https://doi.org/10.1016/j.trac.2024.117571
- Ахмедов Р.Л., Кравцова С.С., Дычко К.А., Рамусь И.В. Применение твердофазной экстракции для определения присадок в автомобильных смазочных маслах методом ГХ/МС // Аналитика и контроль. 2019. Т. 23. № 4. С. 532. https://doi.org/10.15826/analitika.2019.23.4.001
- Дейнека В.И., Михеев А.Ю., Олейниц Е.Ю., Дейнека Л.А. Очистка хлорогеновых кислот методом твердофазной экстракции // Сорбционные и хроматографические процессы. 2018. Т. 18. № 4. С. 488. https://doi.org/10.17308/sorpchrom.2018.18/556
- Толмачева В.В., Ярыкин Д.И., Горбунова М.В., Апяри В.В., Дмитриенко С.Г., Золотов Ю.А. Концентрирование катехоламинов на сверхсшитом полистироле и их определение методом высокоэффективной жидкостной хроматографии // Журн. аналит. химии. 2019. Т. 74. № 11. С. 803. https://doi.org/10.1134/S004445021909010X (Tolmacheva V.V., Yarykin D.I., Gorbunova M.V., Apyari V.V., Dmitrienko S.G., Zolotov Y.A. Preconcentration of catecholamins on hypercrosslinked polystyrene and their determination by high-performance liquid chromatography // J. Anal. Chem. 2019. V. 74. № 11. P. 1057. https://doi.org/10.1134/S1061934819090107)
- Синяева Л.А., Беланова Н.А., Карпов С.И., Селеменев В.Ф., Roessner F. Сорбционное концентрирование фосфатидилхолина наноструктурированными мезопористыми материалами в динамических условиях // Журн. аналит. химии. 2018. Т. 73. № 9. С. 663. https://doi.org/10.1134/S0044450218090141 (Sinyaeva L.A., Belanova N.A., Karpov S.I., Selemenev V.F., Roessner F. Adsorption preconcentration of phosphatidylcholine on nanostructured mesoporous materials under dynamic conditions // J. Anal. Chem. 2018. V. 73. № 9. P. 847. https://doi.org/10.1134/S1061934818090149)
- Золотов Ю.А., Цизин Г.И., Моросанова Е.И., Дмитриенко С.Г. Сорбционное концентрирование микрокомпонентов для целей химического анализа // Успехи химии. 2005. Т. 74. № 1. С. 41. (Zolotov Yu. A., Tsysin G.I., Morosanova E.I., Dmitrienko S.G. Sorption preconcentration of microcomponents for chemical analysis // Russ. Chem. Rev. 2005. V. 74. № 1. P. 37. https://doi.org/10.1070/RC2005v074n01ABEH000845)
- Веницианов Е.В., Ковалев И.А., Цизин Г.И. Оптимизация динамического сорбционного концентрирования в аналитической химии // Теория и практика сорбционных процессов. Межвузовский сб. науч. трудов. 1998. Т. 23. С. 24.
- Карпов С.И., Корабельникова Е.О. Разделение (+)-катехина и кверцетина на мезопористых композитах МСМ-41. Динамика сорбции флавоноидов // Журн. физ. химии. 2015. Т. 89. № 6. С. 1030. https://doi.org/10.7868/s0044453715060151 (Karpov S.I., Korabel'nikova E.O. Separation of (+)-catechin and quercetin on mesoporous MCM-41 composites: Dynamics of the sorption of flavonoids // Russ. J. Phys. Chem. A. 2015. V. 89. № 6. P. 1096. https://doi.org/10.1134/S0036024415060151)
- Синяева Л.А., Карпов С.И., Беланова Н.А., Roessner F., Селеменев В.Ф. Особенности массопереноса фосфатидилхолина при сорбции мезопористыми композитами на основе МСМ-41 // Журн. физ. химии. 2015. Т. 89. № 12. С. 1923. https://doi.org/10.7868/s0044453715120298 (Sinyaeva L.A., Karpov S.I., Belanova N.A., Selemenev V.F., Roessner F. Characteristics of the mass transfer of phosphatidylcholine during its sorption on mesoporous composites based on MCM-41 // Russ. J. Phys. Chem. A. 2015. V. 89. № 12. P. 2278. https://doi.org/10.1134/S0036024415120298)
- Крижановская О.О., Синяева Л.А., Карпов С.И., Селеменев В.Ф., Бородина Е.В., Roessner F. Кинетические модели при описании сорбции жирорастворимых физиологически активных веществ высокоупорядоченными неорганическими кремнийсодержащими материалами // Сорбционные и хроматографические процессы. 2014. Т. 14. № 5. С. 784.
- Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates // J. Am. Chem. Soc. 1992. V. 114. P. 10834. https://doi.org/10.1021/JA00053A020
- Huo Q., Margolese D.I., Stucky G.D. Surfactant control of phases in the synthesis of mesoporous silica-based materials // Chem. Mater. 1996. V. 8. № 5. P. 1147. https://doi.org/10.1021/cm960137h
- Zhao D., Huo Q., Feng, J., Chmelka B.F., Stucky G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures // J. Am. Chem. Soc. 1998. V. 120. № 24. P. 6024. 10.1021/ja974025i' target='_blank'>https://doi.org/doi: 10.1021/ja974025i
- Margolese D., Melero J.A., Christiansen S.C., Chmelka B.F., Stucky G.D. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups // Chem. Mater. 2000. V. 12. № 8. P. 2448. https://doi.org/10.1021/cm0010304
- Yismaw S., Kohns R., Schneider D., Poppitz D., Ebbinghaus S.G., Gläser R. et al. Particle size control of monodispersed spherical nanoparticles with MCM-48-type mesostructure via novel rapid synthesis procedure // J. Nanopart. Res. 2019. V. 21. № 12. https://doi.org/10.1007/s11051-019-4699-7
- Kim T. W., Kleitz F., Paul B., Ryoo R. MCM-48-like large mesoporous silicas with tailored pore structure: Facile synthesis domain in a ternary triblock copolymer-butanol-water system // J. Am. Chem. Soc. 2005. V. 127. № 20. P. 7601. https://doi.org/10.1021/ja042601m
- Wang D., Chen X., Feng, J., Sun M. Recent advances of ordered mesoporous silica materials for solid-phase extraction // J. Chromatogr. A. 2022. V. 1675. Article 463157. https://doi.org/10.1016/j.chroma.2022.463157
- Du L.-J., Yi L., Ye L.-H., Yu-Bo Chen, Cao J., Peng L.-Q. et al. Miniaturized solid-phase extraction of macrolide antibiotics in honey and bovine milk using mesoporous MCM-41 silica as sorbent // J. Chromatogr. A. 2018. V. 1537. P. 10. https://doi.org/10.1016/j.chroma.2018.01.005
- Jiang H., Li J., X. Hu, Shen J., Sun X., Han W., Wang L. Ordered mesoporous silica film as a novel fiber coating for solid-phase microextraction // Talanta. 2017. V. 174. P. 307; http://doi.org/10.1016/j.talanta.2017.06.026
- Gañán J., Morante-Zarcero S., Pérez-Quintanilla D., Marina M.L., Sierra I. One-pot synthesized functionalized mesoporous silica as a reversed-phase sorbent for solid-phase extraction of endocrine disrupting compounds in milks // J. Chromatogr. A. 2016. V. 1428. P. 228. https://doi.org/10.1016/j.chroma.2015.08.063
- Cen S., Chen Y., Tan J., Zhong Y., Luo X., Pan X. et al. The fabrication of a highly ordered molecularly imprinted mesoporous silica for solid-phase extraction of nonylphenol in textile samples // Microchem. J. 2021. V. 164. Article 105954. https://doi.org/10.1016/j.microc.2021.105954
- Pérez-Cejuela H.M., Ten-Doménech I., El Haskouri J., Amorós P., Simó-Alfonso E.F., Herrero-Martínez J.M. Solid-phase extraction of phospholipids using mesoporous silica nanoparticles: Application to human milk samples // Anal. Bioanal. Chem. 2018. V. 410. № 20. P. 4847. https://doi.org/10.1007/s00216-018-1121-8
- Pellicer-Castell E., Belenguer-Sapiña C., Amorós P., Haskouri J.E., Herrero-Martínez J.M., Mauri-Aucejo A.R. Mesoporous silica sorbent with gold nanoparticles for solid-phase extraction of organochlorine pesticides in water samples // J. Chromatogr. A. 2022. V. 1662. Article 462729. https://doi.org/10.1016/j.chroma.2021.462729
- Inagaki S., Fukushima Y., Kuroda K. Synthesis of highly ordered mesoporous materials from a layered polysilicate // J. Chem. Soc. Chem. Commun. 1993. V. 8. P. 680. https://doi.org/10.1039/C39930000680
- Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism // Nature. 1992. V. 359. P. 710. https://doi.org/10.1038/359710a0
- Dong X., Wang Y., Dan H., Hong Z., Song K., Xian Q., Ding Y. Facile route to synthesize mesoporous SBA-15 silica spheres from powder quartz // Mater. Lett. 2017. V. 204. P. 97. https://doi.org/10.1016/j.matlet.2017.05.115
- Lázaro A. L., Rodríguez-Valadez F.J., López J.J.M.H., Espejel-Ayala F. SBA-15 synthesis from sodium silicate prepared with sand and sodium hydroxide // Mater. Res. Express. 2020. V. 7. № 4. P. 45503. https://doi.org/10.1088/2053-1591/ab83a5
- Costa J.A.S., Sarmento V.H.V., Romão L.P.C., Paranhos C.M. Adsorption of organic compounds on mesoporous material from rice husk ash (RHA) // Biomass. Convers. Biorefin. 2020. V. 10. № 4. P. 1105. https://doi.org/10.1007/s13399-019-00476-4
- Mohanraj R., Gnanamangai B.M., Rajivgandhi G.N., Li W.J., Vijayalakshmi G.R., Ponmurugan P. et al. Monitoring the decolourisation efficacy of advanced membrane fabricated phytosilica nanoparticles in textile effluent water treatment // Chemosphere. 2021. V. 273. Article 129681. https://doi.org/10.1016/j.chemosphere.2021.129681
- Oliveira A. de N. de, Cardoso R. da S., Ferreira I.M., Costa A.A.F., Pires L.H.O., Rocha Filho G.N. et al. Valorization of silica-based residues for the synthesis of ordered mesoporous silicas and their applications // Micropor. Mesopor. Mater. 2023. V. 354. Article 112520. https://doi.org/10.1016/j.micromeso.2023.112520
- Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G.H., Chmelka B.F., Stucky G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores // Science. 1998. V. 279. P. 548. https://doi.org/10.1126/science.279.5350.548
- Yang X., Quan K., Wang J. Particle size and pore adjustment of dendritic mesoporous silica using different long alkyl-chain imidazolium ionic liquids as templates // Micropor. Mesopor. Mater. 2022. V. 345. https://doi.org/10.1016/j.micromeso.2022.112249
- Zhang H., Liu S. Synthesis of ordered cubic smaller supermicroporous mesoporous silica using ionic liquid as template // Mater. Lett. 2018. V. 221. P. 119. https://doi.org/10.1016/j.matlet.2018.03.118
- Heidarnezhad, Z., Ghorbani-Choghamarani, A., Taherinia Z. Surfactant-free synthesis of mesoporous silica materials (using tetraetylorthosilicate and oleic acid): Preparation, characterization, and catalytic applications // J. Mol. Struct. 2024. Article 137807. https://doi.org/10.1016/j.molstruc.2024.137807
- Galarneau A., Sartori F., Cangiotti, M. Sponge mesoporous silica formation using disordered phospholipid bilayers as template // J. Phys. Chem. B. 2010. V. 114. № 6. P. 2140. https://doi.org/10.1021/jp908828q
- Toumi N., Bégu, S., Cacciaguerra, T. Phospholipid-silica mesophases formed in hydroalcoholic solution as precursors of mesoporous silica // New J. Chem. 2016. V. 40. № 5. P. 4314. https://doi.org/10.1039/c5nj03563e
- Bueno V., Ghoshal S. Self-assembled surfactant-templated synthesis of porous hollow silica nanoparticles: Mechanism of formation and feasibility of post-synthesis nanoencapsulation // Langmuir. 2020. V. 36. № 48. P. 14633. https://doi.org/10.1021/acs.langmuir.0c02501
- Witecka A., Schmitt J., Courtien M., Gérardin C., Rydzek G. Hybrid mesoporous silica materials templated with surfactant polyion complex (SPIC) micelles for pH-triggered drug release // Micropor. Mesopor. Mater. 2024. V. 365. Article 112913. https://doi.org/10.1016/j.micromeso.2023.112913
- Mani G., Pushparaj H., Peng M.M. Synthesis and characterization of pharmaceutical surfactant templated mesoporous silica: its application to controlled delivery of duloxetine // Mater. Res. Bull. 2014. V. 51. P. 228. https://doi.org/10.1016/j.materresbull.2013.12.037
- Yanagisawa T., Shimizu T., Kuroda K., Kato C. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials // Bull. Chem. Soc. Jpn. 1990. V. 63. № 4. P. 988. https://doi.org/10.1246/bcsj.63.988
- Vartuli J.C., Schmitt K.D., Kresge C.T., Roth W.J., Leonowicz M.E., McCullen S.B. et al. Development of a formation mechanism for M41S materials / Proceedings of the 10th International Zeolite Conference. Garmisch-Partenkirchen (Germany). 17–22 July 1994. P. 53. https://doi.org/10.1016/S0167-2991(08)64096-3
- Bagshaw S.A., Prouzet E., Pinnavaia T.J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants // Science. 1995. V. 269. № 522. P. 1242. https://doi.org/10.1126/science.269.5228.1242
- Tanev P.T., Pinnavaia T.J. Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies // Science. 1996. V. 271. P. 1267.
- Kleitz F., Choi S.H., Ryoo R. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes // Chem. Commun. 2003. V. 3. № 17. P. 2136. https://doi.org/10.1039/b306504a
- Corma A., Kan Q., Navarro M.T., Pérez-Pariente J., Rey F. Synthesis of MCM-41 with different pore diameters without addition of auxiliary organics // Chem. Mater. 1997. V. 9. P. 2123.
- Schmidt-Winkel P., Lukens W.W.; Zhao D. Mesocellular siliceous foams with uniformly sized cells and windows // J. Am. Chem. Soc. 1999. P. 254. https://doi.org/10.1021/ja983218i
- Dou B., Hu Q., Li J., Qiao S., Hao Z. Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry // J. Hazard. Mater. 2011. V. 186. № 2–3. P. 1615. https://doi.org/10.1016/j.jhazmat.2010.12.051
- Kim J., Desch R.J., Thiel S.W., Guliants V.V., Pintoet N.G. Adsorption of biomolecules on mesostructured cellular foam silica: Effect of acid concentration and aging time in synthesis // Micropor. Mesopor. Mater. 2012. V. 149. № 1. P. 60. https://doi.org/10.1016/j.micromeso.2011.08.031
- Fait F., Steinbach J.C., Kandelbauer A., Mayer H.A. Incorporation of silica nanoparticles into porous templates to fabricate mesoporous silica microspheres for high performance liquid chromatography applications // J. Chromatogr. A. 2023. V. 1705. Article 464190. https://doi.org/10.1016/j.chroma.2023.464190
- Pusfitasari E.D., Youngren C., Ruiz-Jimenez J., Sirkiä S., Smått J.-H., Hartonen K., Riekkola M.-L. Selective and efficient sampling of nitrogen-containing compounds from air by in-tube extraction devices packed with zinc oxide-modified mesoporous silica microspheres // J. Chromatogr. Open. 2023. V. 3. Article 100081. https://doi.org/10.1016/j.jcoa.2023.100081
- Fajula F., Galarneau. A. Combining phase separation with pseudomorphic transformation for the control of the pore architecture of functional materials: A review // Pet. Chem. 2019. V. 59. № 8. P. 761. https://doi.org/10.1134/S0965544119080061
- Martin T., Galarneau A., Di Renzo F., Brunel D., Fajula F., Heinisch S. et al. Improvement of chromatographic performance using MCM-41 spheres as stationary phase in HPLC // Chem. Mater. 2004. V. 16. № 9. P. 1725. https://doi.org/10.1021/cm030443c
- Poole C.F., Gunatilleka A.D., Sethuraman R. Contributions of theory to method development in solid-phase extraction // J. Chromatogr. A. 2000. V. 885. P. 17. https://doi.org/10.1016/s0021-9673(00)00224-7
- Galarneau A., Iapichella J., Brunel D., Fajula F., Bayram-Hahn Z., Unger K. et al. Spherical ordered mesoporous silicas and silica monoliths as stationary phases for liquid chromatography // J. Sep. Sci. 2006. V. 29. № 6. P. 844. https://doi.org/10.1002/jssc.200500511
- Karpov S.I., Roessner F., Selemenev V.F. Studies on functionalized mesoporous materials – Part I: Characterization of silylized mesoporous material of type MCM-41 // J. Porous Mater. 2014. V. 21. № 4. P. 449. https://doi.org/10.1007/s10934-014-9791-x
- Сухарева Д.А., Гуськов В.Ю., Карпов С.И., Кудашева Ф.Х., Roessner F., Бородина Е.В. Полярность поверхности модифицированного метильными и фенильными группами адсорбента МСМ-41 по данным газовой хроматографии // Журн. физ. химии. 2016. Т. 90. № 2. С. 285. https://doi.org/10.7868/S0044453716020291 (Sukhareva D.A., Gus’kov V.Yu., Karpov S.I., Kudasheva F.Kh., Roessner F., Borodina E.V. Polarity of an MCM-41 adsorbent surface modified with methyl and phenyl groups based on data from gas chromatography // Russ. J. Phys. Chem. A. 2016. V. 90. № 2. P. 470. https://doi.org/10.1134/S0036024416020291)
- Qin Q., Xu Y. Enhanced nitrobenzene adsorption in aqueous solution by surface silylated MCM-41 // Micropor. Mesopor. Mater. 2016. V. 232. P. 143. https://doi.org/10.1016/j.micromeso.2016.06.018
- Kailasam K., Fels A., Müller K. Octadecyl grafted MCM-41 silica spheres using trifunctionalsilane precursors – preparation and characterization // Micropor. Mesopor. Mater. 2009. V. 117. № 1–2. P. 136. https://doi.org/10.1016/j.micromeso.2008.06.014
- Zhao X.S., Lu G.Q., Whittaker, A. K., Millar G.J., Zhu H.Y. Comprehensive study of surface chemistry of MCM-41 using 29 Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA // J. Phys. Chem. B. 1997. V. 101. P. 6525. https://doi.org/10.1021/jp971366+
- Trendafilova I., Szegedi A., Mihály J., Momekov G., Lihareva N., Popova M. Preparation of efficient quercetin delivery system on zn-modified mesoporous SBA-15 silica carrier // Mater. Sci. Eng. C. 2017. V. 73. P. 285. https://doi.org/10.1016/j.msec.2016.12.063
- Trendafilova I., Lazarova H., Chimshirova R., Trusheva B., Koseva N., Popova M. Novel kaempferol delivery systems based on Mg-containing MCM-41 mesoporous silicas // J. Solid State Chem. 2021. V. 301. Article 122323. https://doi.org/10.1016/j.jssc.2021.122323
- Zhao X.S., Lu G.Q. Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study // J. Phys. Chem. B. 1998. V. 102. № 9. P. 1556.
- Thomé A.G., Schroeter F., Bottke P., Wittayakun J., Roessner F. Facile determination of the degree of modification of ordered mesoporous silica by liquid phase NMR // Micropor. Mesopor. Mater. 2019. V. 274. P. 342. https://doi.org/10.1016/j.micromeso.2018.08.034
- Li C., Yang J., Shi X., Liu J., Yang Q. Synthesis of SBA-15 type mesoporous organosilicas with diethylenebenzene in the framework and post-synthetic framework modification // Micropor. Mesopor. Mater. 2007. V. 98. № 1–3. P. 220. https://doi.org/10.1016/j.micromeso.2006.09.013
- Borodina E., Karpov S.I., Selemenev V.F., Schwieger W., Maracke S., Fröba M., Rößner F. Surface and texture properties of mesoporous silica materials modified by silicon-organic compounds containing quaternary amino groups for their application in base-catalyzed reactions // Micropor. Mesopor. Mater. 2015. V. 203. P. 224. https://doi.org/10.1016/j.micromeso.2014.10.009
- Emen F.M., Demirdöğen R.E., Avsar G., Kiliç D. 2-Chlorobenzoylthiourea-modified MCM-41 for drug delivery // J. Turk. Chem. Soc. A: Chem. 2019. V. 6. № 1. P. 29. https://doi.org/10.18596/jotcsa.467177
- Mello M.R., Phanon D., Silveira G.Q., Llewellyn P.L., Ronconi C.M. Amine-modified MCM-41 mesoporous silica for carbon dioxide capture // Micropor. Mesopor. Mater. 2011. V. 143. № 1. P. 174. https://doi.org/10.1016/j.micromeso.2011.02.022
- Zhou Z., Franz A.W., Hartmann M. Novel organic/inorganic hybrid materials by covalent anchoring of phenothiazines on MCM-41 // Chem. Mater. 2008. V. 20. № 15. P. 4986. https://doi.org/10.1021/cm800804t
- Puanngam M., Unob F. Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg (II) ions // J. Hazard. Mater. 2008. V. 154. № 1–3. P. 578. https://doi.org/10.1016/j.jhazmat.2007.10.090
- Карпов С.И., Roessner F., Селеменев В.Ф., Гульбин С.С., Беланова Н.А., Бородина Е.В., Корабельникова Е.О., Крижановская О.О., Недосекина И.В. Перспективы синтеза и использования упорядоченных мезопористых материалов при сорбционно-хроматографическом анализе, разделении и концентрировании физиологически активных веществ (обзор) // Сорбционные и хроматографические процессы. 2013. Т. 13. № 2. С. 125.
- Sierra I., Pérez-Quintanilla D. Heavy metal complexation on hybrid mesoporous silicas: An approach to analytical applications // Chem. Soc. Rev. 2013. V. 42. № 9. P. 3792. https://doi.org/10.1039/c2cs35221d
- Brezoiu A.M., Matei C., Deaconu M. Stanciuc A.-M., Trifan A., Gaspar-Pintiliescu A., Berger D. Polyphenols extract from grape pomace. Characterization and valorisation through encapsulation into mesoporous silica-type matrices // Food Chem. Toxicol. 2019. V. 133. Article 110787. https://doi.org/10.1016/j.fct.2019.110787
- Tanimu A., Muhammad S.J. S., Ganiyu S.A., Chowdhury S., Alhooshani K. Multivariate optimization of chlorinated hydrocarbons’ micro-solid-phase extraction from wastewater using germania-decorated mesoporous alumina-silica sorbent and analysis by GC–MS // Microchem. J. 2021. V. 160. Article 105674. https://doi.org/10.1016/j.microc.2020.105674
- Lashgari M., Basheer C., Kee Lee H. Application of surfactant-templated ordered mesoporous material as sorbent in micro-solid phase extraction followed by liquid chromatography-triple quadrupole mass spectrometry for determination of perfluorinated carboxylic acids in aqueous media // Talanta. 2015. V. 141. P. 200. https://doi.org/10.1016/j.talanta.2015.03.049
- Razmi H., Khosrowshahi E.M, Farrokhzadeh S. Introduction of coiled solid phase microextraction fiber coated by mesoporous silica/cetyltrimethylammonium bromide for ultra-trace environmental analysis // J. Chromatogr. A. 2017. V. 1506. P. 1. https://doi.org/10.1016/j.chroma.2017.04.010
- Liu J., Ma X., Zhang S., Wu T., Liu H., Xia M., You J. Cationic gemini surfactant templated magnetic cubic mesoporous silica and its application in the magnetic dispersive solid phase extraction of endocrine-disrupting compounds from the migrants of food contact materials // Microchem. J. 2019. V. 145. P. 606. https://doi.org/10.1016/j.microc.2018.11.013
- Gañán J., Pérez-Quintanilla D., Morante-Zarcero S., Sierra I. Comparison of different mesoporous silicas for off-line solid phase extraction of 17β-estradiol from waters and its determination by HPLC-DAD // J. Hazard. Mater. 2013. V. 260. P. 609. https://doi.org/10.1016/j.jhazmat.2013.06.016
- Shen Q., Wang H., Li S., Feng J., Song G., Zhang Y. et al. Development of a mesoporous silica based solid-phase extraction and ultra-performance liquid chromatography–MS/MS method for quantifying lignans in Justicia Procumbens // Electrophoresis. 2020. V. 41. № 5–6. P. 379. https://doi.org/10.1002/elps.201900401
- Hafezian S.M., Azizi S.N., Biparva P., Bekhradnia A. High-efficiency purification of sulforaphane from the broccoli extract by nanostructured SBA-15 silica using solid-phase extraction method // J. Chromatogr. B. 2019. V. 1108. P. 1. https://doi.org/10.1016/j.jchromb.2019.01.007
- Jiang H., Zhang W., Yang J., Xue G., Su S., Li C. et al. Miniaturized solid-phase extraction using a mesoporous molecular sieve SBA-15 as sorbent for the determination of triterpenoid saponins from pulsatilla chinensis by ultrahigh-performance liquid chromatography-charged aerosol detection // J. Pharm. Biomed. Anal. 2021. V. 194. Article 113810. https://doi.org/10.1016/j.jpba.2020.113810
- Silva M., Morante-Zarcero S., Pérez-Quintanilla D., Marina M.L., Sierra I. Environmental chiral analysis of β-blockers: Evaluation of different n -alkyl-modified SBA-15 mesoporous silicas as sorbents in solid-phase extraction // Environ. Chem. 2018. V. 15. № 6. P. 362. https://doi.org/10.1071/EN18030
- Silva M., Morante-Zarcero S., Pérez-Quintanilla D., Marina M.L., Sierra I. Preconcentration of β-blockers using functionalized ordered mesoporous silica as sorbent for SPE and their determination in waters by chiral CE // Electrophoresis. 2017. V. 38. № 15. P. 1905. https://doi.org/10.1002/elps.201600510
- Wang L., Yan H., Yang C., Li Z., Qiao F. Synthesis of mimic molecularly imprinted ordered mesoporous silica adsorbent by thermally reversible semicovalent approach for pipette-tip solid-phase extraction-liquid chromatography fluorescence determination of estradiol in milk // J. Chromatogr. A. 2016. V. 1456. P. 58. https://doi.org/10.1016/j.chroma.2016.06.010
- Du K., Li J., Gao X., Chang Y. Ultrasound-enhanced matrix solid-phase dispersion micro-extraction applying mesoporous molecular sieve SBA-15 for the determination of multiple compounds in fructus psoraleae // Sustain. Chem. Pharm. 2020. V. 15. Article 100198. https://doi.org/10.1016/j.scp.2019.100198
- Behbahani M., Bagheri S., Omidi F., Amini M.M. An amino-functionalized mesoporous silica (KIT-6) as a sorbent for dispersive and ultrasonication-assisted micro solid phase extraction of hippuric acid and methylhippuric acid, two biomarkers for toluene and xylene exposure // Microchim. Acta. 2018. V. 185. № 11. P. 505. https://doi.org/10.1007/s00604-018-3038-5
- Chen M., Lan H., Pan D., Zhang T. Hydrophobic mesoporous silica-coated solid-phase microextraction arrow system for the determination of six biogenic amines in pork and fish // Foods. 2023. V. 12. № 3. P. 578. https://doi.org/10.3390/foods12030578
- Chen Y., Yu Y., Wang S., Han J., Fan M., Zhao Y. et al. Molecularly imprinted polymer sheathed mesoporous silica tube as SPME fiber coating for determination of tobacco-specific nitrosamines in water // Sci. Environ. 2024. V. 906. Article 167655. https://doi.org/10.1016/j.scitotenv.2023.167655
- Lan H., Zhang W., Smått J.H., Koivula R.T., Hartonen K., Riekkola M.-L. Selective extraction of aliphatic amines by functionalized mesoporous silica-coated solid phase microextraction arrow // Microchim. Acta. 2019. V. 186. № 7. P. 412. https://doi.org/10.1007/s00604-019-3523-5
- Wang X., Rao H., Lu X., Du X. Application of sol-gel based octyl-functionalized mesoporous materials coated fiber for solid-phase microextraction // Talanta. 2013. V. 105. P. 204. https://doi.org/10.1016/j.talanta.2012.11.074
- Liu Y., Yang F., Yang L., Zuo G., Zhu Y., Liu X., Guo F. Determination of polycyclic aromatic hydrocarbons by solid-phase microextraction coupled to HPLC using a fiber with mesoporous silica coating // J. Anal. Chem. 2014. V. 69 № 7. P. 686. https://doi.org/10.1134/S1061934814070156
- Du X.Z., Wang Y.R., Tao X.J., Deng H.L. An approach to application of mesoporous hybrid as a fiber coating of solid-phase microextraction // Anal. Chim. Acta. 2005. V. 543. № 1–2. P. 9. https://doi.org/10.1016/j.aca.2005.04.018
- Ruiz-Jimenez J., Lan H., Leleev Y., Hartonen K., Riekkola M.L. Comparison of multiple calibration approaches for the determination of volatile organic compounds in air samples by solid phase microextraction arrow and in-tube extraction // J. Chromatogr. A. 2020. V. 1616. Article 460825. https://doi.org/10.1016/j.chroma.2019.460825
- Feng J., Feng J., Loussala H.M., Han S., Ji X., Li C. et al. Dendritic mesoporous silica nanospheres@porous carbon for in-tube solid-phase microextraction to detect polycyclic aromatic hydrocarbons in tea beverages // Food Chem. 2021. V. 364. Article 130379. https://doi.org/10.1016/j.foodchem.2021.130379
- Loussala H.M., Han S., Feng J., Sun M., Feng J., Fan J., Pei M. Mesoporous silica hybridized by ordered mesoporous carbon for in-tube solid-phase microextraction // J. Sep. Sci. 2020. V. 43. № 18. P. 3655. https://doi.org/10.1002/jssc.202000129
- Shirkhanloo H., Khaligh A., Mousavi H.Z., Rashidi A. Ultrasound assisted-dispersive-micro-solid phase extraction based on bulky amino bimodal mesoporous silica nanoparticles for speciation of trace manganese (II)/(VII) ions in water samples // Microchem. J. 2016. V. 124. P. 637. https://doi.org/10.1016/j.microc.2015.10.008
- Zhu G.T., He X.M., Li X.S., Wang S.-T., Luo Y.-B., Yuan B.-F., Feng Y.-Q. Preparation of mesoporous silica embedded pipette tips for rapid enrichment of endogenous peptides // J. Chromatogr. A. 2013. V. 1316. P. 23. https://doi.org/10.1016/j.chroma.2013.09.068
- Alhooshani K. Determination of nitrosamines in skin care cosmetics using Ce-SBA-15 based stir bar-supported micro-solid-phase extraction coupled with gas chromatography mass spectrometry // Arab. J. Chem. 2020. V. 13. № 1. P. 2508. https://doi.org/10.1016/j.arabjc.2018.06.004
- Tanimu A., Jillani S.M. S., Alluhaidan A.A., Ganiyu S.A., Alhooshani K. 4-Phenyl-1,2,3-triazole functionalized mesoporous silica SBA-15 as sorbent in an efficient stir bar-supported micro-solid-phase extraction strategy for highly to moderately polar phenols // Talanta. 2019. V. 194. P. 377. https://doi.org/10.1016/j.talanta.2018.10.012
- Tanimu A., Alhooshani K. n-Sulfonyl-4-hydroxymethyl-1,2,3-triazole functionalized SBA-15: a porous organic-inorganic material for trace-level phenolic compounds extraction from water samples by stir bar-supported micro-solid-phase extraction // Microchem. J. 2020. V. 159. Article 105410. https://doi.org/10.1016/j.microc.2020.105410
- Arthur C.L., Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers // Anal. Chem. 1990. V. 62. № 19. P. 2145. https://doi.org/0003-2700/90/0362-2145$02.50/0
- Sajid M., Khaled N.M., Rutkowska M., Szczepańska N., Namieśnik J., Płotka-Wasylka J. Solid phase microextraction: apparatus, sorbent materials, and application // Crit. Rev. Anal. Chem. 2019. V. 49. № 3. P. 271. https://doi.org/10.1080/10408347.2018.1517035
- Sun M., Han S., Maloko L.H., Feng J., Li C., Ji X. et al. Graphene oxide-functionalized mesoporous silica for online in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons from honey and detection by high performance liquid chromatography-diode array detector // Microchem. J. 2021. V. 166. Article 106263. https://doi.org/10.1016/j.microc.2021.106263
- Andrade-Eiroa A., Canle M., Leroy-Cancellieri V., Cerdà V. Solid-phase extraction of organic compounds: A critical review. Part II. // Trends Anal. Chem. 2016. V. 80. P. 655. https://doi.org/10.1016/j.trac.2015.08.014
- Barker S.A., Long A.R., Short C.R. Isolation of drug residues from tissues by solid phase dispersion // J. Chromatogr. 1989. V. 475. P. 353. https://doi.org/10.1016/s0021-9673(01)89689-8
- Barker S.A. Matrix solid phase dispersion (MSPD) // J. Biochem. Biophys. Methods. 2007. V. 70. № 2. P. 151. https://doi.org/10.1016/j.jbbm.2006.06.005
- Santos L.F. S., de Jesus R.A., Costa J.A. S., Gouveia L.G. T., de Mesquita M.E., Navickiene S. Evaluation of MCM-41 and MCM-48 mesoporous materials as sorbents in matrix solid phase dispersion method for the determination of pesticides in Soursop Fruit (Annona Muricata) // Inorg. Chem. Commun. 2019. V. 101. P. 45. https://doi.org/10.1016/j.inoche.2019.01.013
- Cao W., Cao J., Ye L. H., Xu J.J., Hu S.S., Peng L.Q. Synthesis and application of mesoporous molecular sieve for miniaturized matrix solid-phase dispersion extraction of bioactive flavonoids from toothpaste, plant, and saliva // Electrophoresis. 2015. V. 36. № 23. P. 2951. https://doi.org/10.1002/elps.201500330
- Cao W., Ye L.H., Cao J., Xu J.-J., Peng L.-Q., Zhu Q.-Y. et al. Quantitative analysis of flavanones from citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry // J. Chromatogr. A. 2015. V. 1406. P. 68. https://doi.org/10.1016/j.chroma.2015.06.035
- Cao W., Hu S.S., Ye L.H., Cao J., Pang X.-Q., Xu J.-J. Trace matrix solid phase dispersion using a molecular sieve as the sorbent for the determination of flavonoids in fruit peels by ultra-performance liquid chromatography // Food Chem. 2016. V. 190. P. 474. https://doi.org/10.1016/j.foodchem.2015.05.133
- Casado N., Morante-Zarcero S., Pérez-Quintanilla D., Câmara J.S., Sierra I. Dispersive solid-phase extraction of polyphenols from juice and smoothie samples using hybrid mesostructured silica followed by ultra-high-performance liquid chromatography-ion-trap tandem mass spectrometry // J. Agric. Food Chem. 2019. V. 67. № 3. P. 955. https://doi.org/10.1021/acs.jafc.8b05578
- Tsai W.H., Huang T.C., Huang J.J., Hsue Y.H., Chuang H.Y. Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection // J. Chromatogr. A. 2009. V. 1216. № 12. P. 2263. https://doi.org/10.1016/j.chroma.2009.01.034
- Scheid C., Mello W., Buchner S., Benvenutti E.V., Deon M., Merib J. Efficient analysis of polycyclic aromatic hydrocarbons by dispersive-µ-solid-phase extraction using silica-based nanostructured sorbent phases coupled to gas chromatography-mass spectrometry // Adv. Sample Prep. 2023. V. 7. P. 10070. https://doi.org/10.1016/j.sampre.2023.100070
- Izcara S., Morante-Zarcero S., Pérez-Quintanilla D., Sierra I. Application of a hybrid large pore mesoporous silica functionalized with β-cyclodextrin as sorbent in dispersive solid-phase extraction. Toward sustainable sample preparation protocols to determine polyphenolic compounds in Arbutus Unedo L. fruits by UHPLC-IT-MS/MS // J. Food Compos. Anal. 2023. V. 118. Article 105191. https://doi.org/10.1016/j.jfca.2023.105191
- Yahaya N., Sanagi M.M., Abd Aziz N., Wan Ibrahim W.A., Nur H., Loh S.H., Kamaruzaman S. Rapid MCM-41 dispersive micro-solid phase extraction coupled with LC/MS/MS for quantification of ketoconazole and voriconazole in biological fluids // Biomed. Chromatogr. 2017. V. 31. № 2. P. 3803. https://doi.org/10.1002/bmc.3803
- Monnier A., Schüth F., Huo Q., Kumar D., Margolese D., Maxwell R.S. et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures // Science. 1993. V. 261. P. 1299. https://doi.org/10.1126/science.261.5126.1299
- Zhang S., Lu F., Ma X., Yue M., Li Y., Liu J., You J. Quaternary ammonium-functionalized MCM-48 mesoporous silica as a sorbent for the dispersive solid-phase extraction of endocrine disrupting compounds in water // J. Chromatogr. A. 2018. V. 1557. P. 1. https://doi.org/10.1016/j.chroma.2018.05.011
- González-Gómez L., Gañán J., Morante-Zarcero S., Pérez-Quintanilla D., Sierra I. Mesostructured silicas as cation-exchange sorbents in packed or dispersive solid phase extraction for the determination of tropane alkaloids in culinary aromatics herbs by HPLC-MS/MS // Toxins. 2022. V. 14. № 3. P. 1. https://doi.org/10.3390/toxins14030218
- Si R., Han Y., Wu D., Qiao F., Bai L., Wang Z., Yana H. Ionic liquid-organic-functionalized ordered mesoporous silica-integrated dispersive solid-phase extraction for determination of plant growth regulators in fresh Panax Ginseng // Talanta. 2020. V. 207. Article 120274. https://doi.org/10.1016/j.talanta.2019.120247
- Castiglioni M., Onida B., Rivoira L., Bubba M.D., Ronchetti S., Bruzzoniti M.C. Amino groups modified SBA-15 for dispersive-solid phase extraction in the analysis of micropollutants by QuEchERS approach // J. Chromatogr. A. 2021. V. 1645. Article 462107. https://doi.org/10.1016/j.chroma.2021.462107
- Izcara, S., Casado N., Morante-Zarcero S., Pérez-Quintanilla D., Sierra I. Miniaturized and modified QuEChERS method with mesostructured silica as clean-up sorbent for pyrrolizidine alkaloids determination in aromatic herbs // Food Chem. 2022. V. 380. Article 132189. https://doi.org/10.1016/j.foodchem.2022.132189
- Terracciano R., Preianò M., Maggisano G., Pelaia C., Savino R. Hexagonal mesoporous silica as a rapid, efficient and versatile tool for MALDI-TOF MS sample preparation in clinical peptidomics analysis: A pilot study // Molecules. 2019. V. 24. № 12. Article 2311. https://doi.org/ 10.3390/molecules24122311
- Zhang M., Yang J., Geng X., Li Y., Zha Z., Cui S., Yang J. Magnetic adsorbent based on mesoporous silica nanoparticles for magnetic solid phase extraction of pyrethroid pesticides in water samples // J. Chromatogr. A. 2019. V. 1598. P. 20. https://doi.org/10.1016/j.chroma.2019.03.048
- Mehdinia A., Bahrami M., Mozaffari S. A comparative study on different functionalized mesoporous silica nanomagnetic sorbents for efficient extraction of parabens // J. Iran. Chem. Soc. 2015. V. 12. № 9. P. 1543. https://doi.org/10.1007/s13738-015-0626-8
- De Souza K.C., Andrade G.F., Vasconcelos I. Magnetic solid-phase extraction based on mesoporous silica-coated magnetic nanoparticles for analysis of oral antidiabetic drugs in human plasma // Mat. Sci. Eng. C. 2014. V. 40. P. 275. https://doi.org/10.1016/j.msec.2014.04.004
- Molaei R., Tajik H., Moradi M. Magnetic solid phase extraction based on mesoporous silica-coated iron oxide nanoparticles for simultaneous determination of biogenic amines in an Iranian traditional dairy product, Kashk // Food Control. 2019. V. 101. P. 1. https://doi.org/10.1016/j.foodcont.2019.02.011
- Abd Halim W.I.T., Abd Hamid M.A., Aziz M.Y., Din A.T.M., Zain N.N.M., Kamaruzaman S. et al. Performance analysis and green profile assessment of synthesised amino-functionalised magnetic silica nanocomposite for magnetic micro-solid phase extraction of penicillin antibiotics from milk samples // J. Food Compos. Anal. 2024. V. 127. Article 105944. https://doi.org/10.1016/j.jfca.2023.105944
Supplementary files
