Ordered mesoporous silica in modern versions of solid-phase extraction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review systematizes information on nanostructured materials used in solid-phase extraction (SPE) and its modern versions. The main attention is paid to the consideration of nanostructured analogues of MCM-41 and SBA-15 both in classical SPE and in modern versions of solid-phase microextraction, microextraction by matrix solid-phase dispersion, dispersive solid-phase extraction, and magnetic SPE. The use of silica with a hexagonal and cubic mesophase structure makes it possible to significantly increase the completeness of analyte extraction, improve the metrological characteristics of determining both metal ions and biologically active substances in complex multicomponent matrices of real objects of analysis. An abnormally high surface area (up to 1000 m2/g and more), adjustable mesopore size, ease of modification by grafting functional groups allow to significantly increase the selectivity of solid-phase materials compared to traditionally used silica gels and polymer ion exchangers. The advantages of ordered silica when used at the stage of extraction and concentration of analytes in solid-phase extraction options, as well as chromatographic separation of substances similar in nature, make it possible to expand the range of linearity of the analytical signal response of the analysis methods used, and the detection limits of ions and molecules can be reduced to the level of ng/mL, ng/g.

Full Text

Restricted Access

About the authors

A. S. Zavalyueva

Voronezh State University

Author for correspondence.
Email: a-kh-01@yandex.ru
Russian Federation, 1, University Square, Voronezh, 394018

S. I. Karpov

Voronezh State University

Email: karsiv@mail.ru
Russian Federation, 1, University Square, Voronezh, 394018

N. A. Zatonskaya

Voronezh State University

Email: a-kh-01@yandex.ru
Russian Federation, 1, University Square, Voronezh, 394018

V. F. Selemenev

Voronezh State University

Email: a-kh-01@yandex.ru
Russian Federation, 1, University Square, Voronezh, 394018

References

  1. Федотов П.С., Малофеева Г.И., Савонина Е.Ю., Спиваков Б.Я. Твердофазная экстракция органических веществ: нетрадиционные методы и подходы // Журн. аналит. химии. 2019. Т. 74. № 3. С. 163. https://doi.org/10.1134/s0044450219030046 (Fedotov P.S., Malofeeva G.I., Savonina E.Y., Spivakov B.Y. Solid-phase extraction of organic substances: unconventional methods and approaches // J. Anal. Chem. 2019. V. 74. № 3. P. 205. https://doi.org/10.1134/S1061934819030043)
  2. Зайцев В.Н., Зуй М.Ф. Твердофазное микроэкстракционное концентрирование // Журн. аналит. химии. 2014. Т. 69. № 8. С. 787. https://doi.org/10.7868/s0044450214080131 (Zaitsev V.N., Zui M.F. Preconcentration by solid-phase microextraction // J. Anal. Chem. 2014. V. 69. № 3. P. 715. https://doi.org/10.1134/S1061934814080139)
  3. Khezeli T., Daneshfar A. Development of dispersive micro-solid phase extraction based on micro and nano sorbents // Trends Anal. Chem. 2017. V. 89. P. 99. https://doi.org/10.1016/j.trac.2017.01.004
  4. Capriotti A.L., Cavaliere C., Foglia P., Samperi R., Stampachiacchiere S., Ventura S., Laganà A. Recent advances and developments in matrix solid-phase dispersion // Trends Anal. Chem. 2015. V. 71. P. 186. https://doi.org/10.1016/j.trac.2015.03.012
  5. Elattar R.H., Kamal E.-D. A. Porous material-based QuEchERS: Exploring new horizons in sample preparation // Trends Anal. Chem. 2024. V. 172. Article 117571. https://doi.org/10.1016/j.trac.2024.117571
  6. Ахмедов Р.Л., Кравцова С.С., Дычко К.А., Рамусь И.В. Применение твердофазной экстракции для определения присадок в автомобильных смазочных маслах методом ГХ/МС // Аналитика и контроль. 2019. Т. 23. № 4. С. 532. https://doi.org/10.15826/analitika.2019.23.4.001
  7. Дейнека В.И., Михеев А.Ю., Олейниц Е.Ю., Дейнека Л.А. Очистка хлорогеновых кислот методом твердофазной экстракции // Сорбционные и хроматографические процессы. 2018. Т. 18. № 4. С. 488. https://doi.org/10.17308/sorpchrom.2018.18/556
  8. Толмачева В.В., Ярыкин Д.И., Горбунова М.В., Апяри В.В., Дмитриенко С.Г., Золотов Ю.А. Концентрирование катехоламинов на сверхсшитом полистироле и их определение методом высокоэффективной жидкостной хроматографии // Журн. аналит. химии. 2019. Т. 74. № 11. С. 803. https://doi.org/10.1134/S004445021909010X (Tolmacheva V.V., Yarykin D.I., Gorbunova M.V., Apyari V.V., Dmitrienko S.G., Zolotov Y.A. Preconcentration of catecholamins on hypercrosslinked polystyrene and their determination by high-performance liquid chromatography // J. Anal. Chem. 2019. V. 74. № 11. P. 1057. https://doi.org/10.1134/S1061934819090107)
  9. Синяева Л.А., Беланова Н.А., Карпов С.И., Селеменев В.Ф., Roessner F. Сорбционное концентрирование фосфатидилхолина наноструктурированными мезопористыми материалами в динамических условиях // Журн. аналит. химии. 2018. Т. 73. № 9. С. 663. https://doi.org/10.1134/S0044450218090141 (Sinyaeva L.A., Belanova N.A., Karpov S.I., Selemenev V.F., Roessner F. Adsorption preconcentration of phosphatidylcholine on nanostructured mesoporous materials under dynamic conditions // J. Anal. Chem. 2018. V. 73. № 9. P. 847. https://doi.org/10.1134/S1061934818090149)
  10. Золотов Ю.А., Цизин Г.И., Моросанова Е.И., Дмитриенко С.Г. Сорбционное концентрирование микрокомпонентов для целей химического анализа // Успехи химии. 2005. Т. 74. № 1. С. 41. (Zolotov Yu. A., Tsysin G.I., Morosanova E.I., Dmitrienko S.G. Sorption preconcentration of microcomponents for chemical analysis // Russ. Chem. Rev. 2005. V. 74. № 1. P. 37. https://doi.org/10.1070/RC2005v074n01ABEH000845)
  11. Веницианов Е.В., Ковалев И.А., Цизин Г.И. Оптимизация динамического сорбционного концентрирования в аналитической химии // Теория и практика сорбционных процессов. Межвузовский сб. науч. трудов. 1998. Т. 23. С. 24.
  12. Карпов С.И., Корабельникова Е.О. Разделение (+)-катехина и кверцетина на мезопористых композитах МСМ-41. Динамика сорбции флавоноидов // Журн. физ. химии. 2015. Т. 89. № 6. С. 1030. https://doi.org/10.7868/s0044453715060151 (Karpov S.I., Korabel'nikova E.O. Separation of (+)-catechin and quercetin on mesoporous MCM-41 composites: Dynamics of the sorption of flavonoids // Russ. J. Phys. Chem. A. 2015. V. 89. № 6. P. 1096. https://doi.org/10.1134/S0036024415060151)
  13. Синяева Л.А., Карпов С.И., Беланова Н.А., Roessner F., Селеменев В.Ф. Особенности массопереноса фосфатидилхолина при сорбции мезопористыми композитами на основе МСМ-41 // Журн. физ. химии. 2015. Т. 89. № 12. С. 1923. https://doi.org/10.7868/s0044453715120298 (Sinyaeva L.A., Karpov S.I., Belanova N.A., Selemenev V.F., Roessner F. Characteristics of the mass transfer of phosphatidylcholine during its sorption on mesoporous composites based on MCM-41 // Russ. J. Phys. Chem. A. 2015. V. 89. № 12. P. 2278. https://doi.org/10.1134/S0036024415120298)
  14. Крижановская О.О., Синяева Л.А., Карпов С.И., Селеменев В.Ф., Бородина Е.В., Roessner F. Кинетические модели при описании сорбции жирорастворимых физиологически активных веществ высокоупорядоченными неорганическими кремнийсодержащими материалами // Сорбционные и хроматографические процессы. 2014. Т. 14. № 5. С. 784.
  15. Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates // J. Am. Chem. Soc. 1992. V. 114. P. 10834. https://doi.org/10.1021/JA00053A020
  16. Huo Q., Margolese D.I., Stucky G.D. Surfactant control of phases in the synthesis of mesoporous silica-based materials // Chem. Mater. 1996. V. 8. № 5. P. 1147. https://doi.org/10.1021/cm960137h
  17. Zhao D., Huo Q., Feng, J., Chmelka B.F., Stucky G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures // J. Am. Chem. Soc. 1998. V. 120. № 24. P. 6024. 10.1021/ja974025i' target='_blank'>https://doi.org/doi: 10.1021/ja974025i
  18. Margolese D., Melero J.A., Christiansen S.C., Chmelka B.F., Stucky G.D. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups // Chem. Mater. 2000. V. 12. № 8. P. 2448. https://doi.org/10.1021/cm0010304
  19. Yismaw S., Kohns R., Schneider D., Poppitz D., Ebbinghaus S.G., Gläser R. et al. Particle size control of monodispersed spherical nanoparticles with MCM-48-type mesostructure via novel rapid synthesis procedure // J. Nanopart. Res. 2019. V. 21. № 12. https://doi.org/10.1007/s11051-019-4699-7
  20. Kim T. W., Kleitz F., Paul B., Ryoo R. MCM-48-like large mesoporous silicas with tailored pore structure: Facile synthesis domain in a ternary triblock copolymer-butanol-water system // J. Am. Chem. Soc. 2005. V. 127. № 20. P. 7601. https://doi.org/10.1021/ja042601m
  21. Wang D., Chen X., Feng, J., Sun M. Recent advances of ordered mesoporous silica materials for solid-phase extraction // J. Chromatogr. A. 2022. V. 1675. Article 463157. https://doi.org/10.1016/j.chroma.2022.463157
  22. Du L.-J., Yi L., Ye L.-H., Yu-Bo Chen, Cao J., Peng L.-Q. et al. Miniaturized solid-phase extraction of macrolide antibiotics in honey and bovine milk using mesoporous MCM-41 silica as sorbent // J. Chromatogr. A. 2018. V. 1537. P. 10. https://doi.org/10.1016/j.chroma.2018.01.005
  23. Jiang H., Li J., X. Hu, Shen J., Sun X., Han W., Wang L. Ordered mesoporous silica film as a novel fiber coating for solid-phase microextraction // Talanta. 2017. V. 174. P. 307; http://doi.org/10.1016/j.talanta.2017.06.026
  24. Gañán J., Morante-Zarcero S., Pérez-Quintanilla D., Marina M.L., Sierra I. One-pot synthesized functionalized mesoporous silica as a reversed-phase sorbent for solid-phase extraction of endocrine disrupting compounds in milks // J. Chromatogr. A. 2016. V. 1428. P. 228. https://doi.org/10.1016/j.chroma.2015.08.063
  25. Cen S., Chen Y., Tan J., Zhong Y., Luo X., Pan X. et al. The fabrication of a highly ordered molecularly imprinted mesoporous silica for solid-phase extraction of nonylphenol in textile samples // Microchem. J. 2021. V. 164. Article 105954. https://doi.org/10.1016/j.microc.2021.105954
  26. Pérez-Cejuela H.M., Ten-Doménech I., El Haskouri J., Amorós P., Simó-Alfonso E.F., Herrero-Martínez J.M. Solid-phase extraction of phospholipids using mesoporous silica nanoparticles: Application to human milk samples // Anal. Bioanal. Chem. 2018. V. 410. № 20. P. 4847. https://doi.org/10.1007/s00216-018-1121-8
  27. Pellicer-Castell E., Belenguer-Sapiña C., Amorós P., Haskouri J.E., Herrero-Martínez J.M., Mauri-Aucejo A.R. Mesoporous silica sorbent with gold nanoparticles for solid-phase extraction of organochlorine pesticides in water samples // J. Chromatogr. A. 2022. V. 1662. Article 462729. https://doi.org/10.1016/j.chroma.2021.462729
  28. Inagaki S., Fukushima Y., Kuroda K. Synthesis of highly ordered mesoporous materials from a layered polysilicate // J. Chem. Soc. Chem. Commun. 1993. V. 8. P. 680. https://doi.org/10.1039/C39930000680
  29. Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism // Nature. 1992. V. 359. P. 710. https://doi.org/10.1038/359710a0
  30. Dong X., Wang Y., Dan H., Hong Z., Song K., Xian Q., Ding Y. Facile route to synthesize mesoporous SBA-15 silica spheres from powder quartz // Mater. Lett. 2017. V. 204. P. 97. https://doi.org/10.1016/j.matlet.2017.05.115
  31. Lázaro A. L., Rodríguez-Valadez F.J., López J.J.M.H., Espejel-Ayala F. SBA-15 synthesis from sodium silicate prepared with sand and sodium hydroxide // Mater. Res. Express. 2020. V. 7. № 4. P. 45503. https://doi.org/10.1088/2053-1591/ab83a5
  32. Costa J.A.S., Sarmento V.H.V., Romão L.P.C., Paranhos C.M. Adsorption of organic compounds on mesoporous material from rice husk ash (RHA) // Biomass. Convers. Biorefin. 2020. V. 10. № 4. P. 1105. https://doi.org/10.1007/s13399-019-00476-4
  33. Mohanraj R., Gnanamangai B.M., Rajivgandhi G.N., Li W.J., Vijayalakshmi G.R., Ponmurugan P. et al. Monitoring the decolourisation efficacy of advanced membrane fabricated phytosilica nanoparticles in textile effluent water treatment // Chemosphere. 2021. V. 273. Article 129681. https://doi.org/10.1016/j.chemosphere.2021.129681
  34. Oliveira A. de N. de, Cardoso R. da S., Ferreira I.M., Costa A.A.F., Pires L.H.O., Rocha Filho G.N. et al. Valorization of silica-based residues for the synthesis of ordered mesoporous silicas and their applications // Micropor. Mesopor. Mater. 2023. V. 354. Article 112520. https://doi.org/10.1016/j.micromeso.2023.112520
  35. Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G.H., Chmelka B.F., Stucky G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores // Science. 1998. V. 279. P. 548. https://doi.org/10.1126/science.279.5350.548
  36. Yang X., Quan K., Wang J. Particle size and pore adjustment of dendritic mesoporous silica using different long alkyl-chain imidazolium ionic liquids as templates // Micropor. Mesopor. Mater. 2022. V. 345. https://doi.org/10.1016/j.micromeso.2022.112249
  37. Zhang H., Liu S. Synthesis of ordered cubic smaller supermicroporous mesoporous silica using ionic liquid as template // Mater. Lett. 2018. V. 221. P. 119. https://doi.org/10.1016/j.matlet.2018.03.118
  38. Heidarnezhad, Z., Ghorbani-Choghamarani, A., Taherinia Z. Surfactant-free synthesis of mesoporous silica materials (using tetraetylorthosilicate and oleic acid): Preparation, characterization, and catalytic applications // J. Mol. Struct. 2024. Article 137807. https://doi.org/10.1016/j.molstruc.2024.137807
  39. Galarneau A., Sartori F., Cangiotti, M. Sponge mesoporous silica formation using disordered phospholipid bilayers as template // J. Phys. Chem. B. 2010. V. 114. № 6. P. 2140. https://doi.org/10.1021/jp908828q
  40. Toumi N., Bégu, S., Cacciaguerra, T. Phospholipid-silica mesophases formed in hydroalcoholic solution as precursors of mesoporous silica // New J. Chem. 2016. V. 40. № 5. P. 4314. https://doi.org/10.1039/c5nj03563e
  41. Bueno V., Ghoshal S. Self-assembled surfactant-templated synthesis of porous hollow silica nanoparticles: Mechanism of formation and feasibility of post-synthesis nanoencapsulation // Langmuir. 2020. V. 36. № 48. P. 14633. https://doi.org/10.1021/acs.langmuir.0c02501
  42. Witecka A., Schmitt J., Courtien M., Gérardin C., Rydzek G. Hybrid mesoporous silica materials templated with surfactant polyion complex (SPIC) micelles for pH-triggered drug release // Micropor. Mesopor. Mater. 2024. V. 365. Article 112913. https://doi.org/10.1016/j.micromeso.2023.112913
  43. Mani G., Pushparaj H., Peng M.M. Synthesis and characterization of pharmaceutical surfactant templated mesoporous silica: its application to controlled delivery of duloxetine // Mater. Res. Bull. 2014. V. 51. P. 228. https://doi.org/10.1016/j.materresbull.2013.12.037
  44. Yanagisawa T., Shimizu T., Kuroda K., Kato C. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials // Bull. Chem. Soc. Jpn. 1990. V. 63. № 4. P. 988. https://doi.org/10.1246/bcsj.63.988
  45. Vartuli J.C., Schmitt K.D., Kresge C.T., Roth W.J., Leonowicz M.E., McCullen S.B. et al. Development of a formation mechanism for M41S materials / Proceedings of the 10th International Zeolite Conference. Garmisch-Partenkirchen (Germany). 17–22 July 1994. P. 53. https://doi.org/10.1016/S0167-2991(08)64096-3
  46. Bagshaw S.A., Prouzet E., Pinnavaia T.J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants // Science. 1995. V. 269. № 522. P. 1242. https://doi.org/10.1126/science.269.5228.1242
  47. Tanev P.T., Pinnavaia T.J. Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies // Science. 1996. V. 271. P. 1267.
  48. Kleitz F., Choi S.H., Ryoo R. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes // Chem. Commun. 2003. V. 3. № 17. P. 2136. https://doi.org/10.1039/b306504a
  49. Corma A., Kan Q., Navarro M.T., Pérez-Pariente J., Rey F. Synthesis of MCM-41 with different pore diameters without addition of auxiliary organics // Chem. Mater. 1997. V. 9. P. 2123.
  50. Schmidt-Winkel P., Lukens W.W.; Zhao D. Mesocellular siliceous foams with uniformly sized cells and windows // J. Am. Chem. Soc. 1999. P. 254. https://doi.org/10.1021/ja983218i
  51. Dou B., Hu Q., Li J., Qiao S., Hao Z. Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry // J. Hazard. Mater. 2011. V. 186. № 2–3. P. 1615. https://doi.org/10.1016/j.jhazmat.2010.12.051
  52. Kim J., Desch R.J., Thiel S.W., Guliants V.V., Pintoet N.G. Adsorption of biomolecules on mesostructured cellular foam silica: Effect of acid concentration and aging time in synthesis // Micropor. Mesopor. Mater. 2012. V. 149. № 1. P. 60. https://doi.org/10.1016/j.micromeso.2011.08.031
  53. Fait F., Steinbach J.C., Kandelbauer A., Mayer H.A. Incorporation of silica nanoparticles into porous templates to fabricate mesoporous silica microspheres for high performance liquid chromatography applications // J. Chromatogr. A. 2023. V. 1705. Article 464190. https://doi.org/10.1016/j.chroma.2023.464190
  54. Pusfitasari E.D., Youngren C., Ruiz-Jimenez J., Sirkiä S., Smått J.-H., Hartonen K., Riekkola M.-L. Selective and efficient sampling of nitrogen-containing compounds from air by in-tube extraction devices packed with zinc oxide-modified mesoporous silica microspheres // J. Chromatogr. Open. 2023. V. 3. Article 100081. https://doi.org/10.1016/j.jcoa.2023.100081
  55. Fajula F., Galarneau. A. Combining phase separation with pseudomorphic transformation for the control of the pore architecture of functional materials: A review // Pet. Chem. 2019. V. 59. № 8. P. 761. https://doi.org/10.1134/S0965544119080061
  56. Martin T., Galarneau A., Di Renzo F., Brunel D., Fajula F., Heinisch S. et al. Improvement of chromatographic performance using MCM-41 spheres as stationary phase in HPLC // Chem. Mater. 2004. V. 16. № 9. P. 1725. https://doi.org/10.1021/cm030443c
  57. Poole C.F., Gunatilleka A.D., Sethuraman R. Contributions of theory to method development in solid-phase extraction // J. Chromatogr. A. 2000. V. 885. P. 17. https://doi.org/10.1016/s0021-9673(00)00224-7
  58. Galarneau A., Iapichella J., Brunel D., Fajula F., Bayram-Hahn Z., Unger K. et al. Spherical ordered mesoporous silicas and silica monoliths as stationary phases for liquid chromatography // J. Sep. Sci. 2006. V. 29. № 6. P. 844. https://doi.org/10.1002/jssc.200500511
  59. Karpov S.I., Roessner F., Selemenev V.F. Studies on functionalized mesoporous materials – Part I: Characterization of silylized mesoporous material of type MCM-41 // J. Porous Mater. 2014. V. 21. № 4. P. 449. https://doi.org/10.1007/s10934-014-9791-x
  60. Сухарева Д.А., Гуськов В.Ю., Карпов С.И., Кудашева Ф.Х., Roessner F., Бородина Е.В. Полярность поверхности модифицированного метильными и фенильными группами адсорбента МСМ-41 по данным газовой хроматографии // Журн. физ. химии. 2016. Т. 90. № 2. С. 285. https://doi.org/10.7868/S0044453716020291 (Sukhareva D.A., Gus’kov V.Yu., Karpov S.I., Kudasheva F.Kh., Roessner F., Borodina E.V. Polarity of an MCM-41 adsorbent surface modified with methyl and phenyl groups based on data from gas chromatography // Russ. J. Phys. Chem. A. 2016. V. 90. № 2. P. 470. https://doi.org/10.1134/S0036024416020291)
  61. Qin Q., Xu Y. Enhanced nitrobenzene adsorption in aqueous solution by surface silylated MCM-41 // Micropor. Mesopor. Mater. 2016. V. 232. P. 143. https://doi.org/10.1016/j.micromeso.2016.06.018
  62. Kailasam K., Fels A., Müller K. Octadecyl grafted MCM-41 silica spheres using trifunctionalsilane precursors – preparation and characterization // Micropor. Mesopor. Mater. 2009. V. 117. № 1–2. P. 136. https://doi.org/10.1016/j.micromeso.2008.06.014
  63. Zhao X.S., Lu G.Q., Whittaker, A. K., Millar G.J., Zhu H.Y. Comprehensive study of surface chemistry of MCM-41 using 29 Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA // J. Phys. Chem. B. 1997. V. 101. P. 6525. https://doi.org/10.1021/jp971366+
  64. Trendafilova I., Szegedi A., Mihály J., Momekov G., Lihareva N., Popova M. Preparation of efficient quercetin delivery system on zn-modified mesoporous SBA-15 silica carrier // Mater. Sci. Eng. C. 2017. V. 73. P. 285. https://doi.org/10.1016/j.msec.2016.12.063
  65. Trendafilova I., Lazarova H., Chimshirova R., Trusheva B., Koseva N., Popova M. Novel kaempferol delivery systems based on Mg-containing MCM-41 mesoporous silicas // J. Solid State Chem. 2021. V. 301. Article 122323. https://doi.org/10.1016/j.jssc.2021.122323
  66. Zhao X.S., Lu G.Q. Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study // J. Phys. Chem. B. 1998. V. 102. № 9. P. 1556.
  67. Thomé A.G., Schroeter F., Bottke P., Wittayakun J., Roessner F. Facile determination of the degree of modification of ordered mesoporous silica by liquid phase NMR // Micropor. Mesopor. Mater. 2019. V. 274. P. 342. https://doi.org/10.1016/j.micromeso.2018.08.034
  68. Li C., Yang J., Shi X., Liu J., Yang Q. Synthesis of SBA-15 type mesoporous organosilicas with diethylenebenzene in the framework and post-synthetic framework modification // Micropor. Mesopor. Mater. 2007. V. 98. № 1–3. P. 220. https://doi.org/10.1016/j.micromeso.2006.09.013
  69. Borodina E., Karpov S.I., Selemenev V.F., Schwieger W., Maracke S., Fröba M., Rößner F. Surface and texture properties of mesoporous silica materials modified by silicon-organic compounds containing quaternary amino groups for their application in base-catalyzed reactions // Micropor. Mesopor. Mater. 2015. V. 203. P. 224. https://doi.org/10.1016/j.micromeso.2014.10.009
  70. Emen F.M., Demirdöğen R.E., Avsar G., Kiliç D. 2-Chlorobenzoylthiourea-modified MCM-41 for drug delivery // J. Turk. Chem. Soc. A: Chem. 2019. V. 6. № 1. P. 29. https://doi.org/10.18596/jotcsa.467177
  71. Mello M.R., Phanon D., Silveira G.Q., Llewellyn P.L., Ronconi C.M. Amine-modified MCM-41 mesoporous silica for carbon dioxide capture // Micropor. Mesopor. Mater. 2011. V. 143. № 1. P. 174. https://doi.org/10.1016/j.micromeso.2011.02.022
  72. Zhou Z., Franz A.W., Hartmann M. Novel organic/inorganic hybrid materials by covalent anchoring of phenothiazines on MCM-41 // Chem. Mater. 2008. V. 20. № 15. P. 4986. https://doi.org/10.1021/cm800804t
  73. Puanngam M., Unob F. Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg (II) ions // J. Hazard. Mater. 2008. V. 154. № 1–3. P. 578. https://doi.org/10.1016/j.jhazmat.2007.10.090
  74. Карпов С.И., Roessner F., Селеменев В.Ф., Гульбин С.С., Беланова Н.А., Бородина Е.В., Корабельникова Е.О., Крижановская О.О., Недосекина И.В. Перспективы синтеза и использования упорядоченных мезопористых материалов при сорбционно-хроматографическом анализе, разделении и концентрировании физиологически активных веществ (обзор) // Сорбционные и хроматографические процессы. 2013. Т. 13. № 2. С. 125.
  75. Sierra I., Pérez-Quintanilla D. Heavy metal complexation on hybrid mesoporous silicas: An approach to analytical applications // Chem. Soc. Rev. 2013. V. 42. № 9. P. 3792. https://doi.org/10.1039/c2cs35221d
  76. Brezoiu A.M., Matei C., Deaconu M. Stanciuc A.-M., Trifan A., Gaspar-Pintiliescu A., Berger D. Polyphenols extract from grape pomace. Characterization and valorisation through encapsulation into mesoporous silica-type matrices // Food Chem. Toxicol. 2019. V. 133. Article 110787. https://doi.org/10.1016/j.fct.2019.110787
  77. Tanimu A., Muhammad S.J. S., Ganiyu S.A., Chowdhury S., Alhooshani K. Multivariate optimization of chlorinated hydrocarbons’ micro-solid-phase extraction from wastewater using germania-decorated mesoporous alumina-silica sorbent and analysis by GC–MS // Microchem. J. 2021. V. 160. Article 105674. https://doi.org/10.1016/j.microc.2020.105674
  78. Lashgari M., Basheer C., Kee Lee H. Application of surfactant-templated ordered mesoporous material as sorbent in micro-solid phase extraction followed by liquid chromatography-triple quadrupole mass spectrometry for determination of perfluorinated carboxylic acids in aqueous media // Talanta. 2015. V. 141. P. 200. https://doi.org/10.1016/j.talanta.2015.03.049
  79. Razmi H., Khosrowshahi E.M, Farrokhzadeh S. Introduction of coiled solid phase microextraction fiber coated by mesoporous silica/cetyltrimethylammonium bromide for ultra-trace environmental analysis // J. Chromatogr. A. 2017. V. 1506. P. 1. https://doi.org/10.1016/j.chroma.2017.04.010
  80. Liu J., Ma X., Zhang S., Wu T., Liu H., Xia M., You J. Cationic gemini surfactant templated magnetic cubic mesoporous silica and its application in the magnetic dispersive solid phase extraction of endocrine-disrupting compounds from the migrants of food contact materials // Microchem. J. 2019. V. 145. P. 606. https://doi.org/10.1016/j.microc.2018.11.013
  81. Gañán J., Pérez-Quintanilla D., Morante-Zarcero S., Sierra I. Comparison of different mesoporous silicas for off-line solid phase extraction of 17β-estradiol from waters and its determination by HPLC-DAD // J. Hazard. Mater. 2013. V. 260. P. 609. https://doi.org/10.1016/j.jhazmat.2013.06.016
  82. Shen Q., Wang H., Li S., Feng J., Song G., Zhang Y. et al. Development of a mesoporous silica based solid-phase extraction and ultra-performance liquid chromatography–MS/MS method for quantifying lignans in Justicia Procumbens // Electrophoresis. 2020. V. 41. № 5–6. P. 379. https://doi.org/10.1002/elps.201900401
  83. Hafezian S.M., Azizi S.N., Biparva P., Bekhradnia A. High-efficiency purification of sulforaphane from the broccoli extract by nanostructured SBA-15 silica using solid-phase extraction method // J. Chromatogr. B. 2019. V. 1108. P. 1. https://doi.org/10.1016/j.jchromb.2019.01.007
  84. Jiang H., Zhang W., Yang J., Xue G., Su S., Li C. et al. Miniaturized solid-phase extraction using a mesoporous molecular sieve SBA-15 as sorbent for the determination of triterpenoid saponins from pulsatilla chinensis by ultrahigh-performance liquid chromatography-charged aerosol detection // J. Pharm. Biomed. Anal. 2021. V. 194. Article 113810. https://doi.org/10.1016/j.jpba.2020.113810
  85. Silva M., Morante-Zarcero S., Pérez-Quintanilla D., Marina M.L., Sierra I. Environmental chiral analysis of β-blockers: Evaluation of different n -alkyl-modified SBA-15 mesoporous silicas as sorbents in solid-phase extraction // Environ. Chem. 2018. V. 15. № 6. P. 362. https://doi.org/10.1071/EN18030
  86. Silva M., Morante-Zarcero S., Pérez-Quintanilla D., Marina M.L., Sierra I. Preconcentration of β-blockers using functionalized ordered mesoporous silica as sorbent for SPE and their determination in waters by chiral CE // Electrophoresis. 2017. V. 38. № 15. P. 1905. https://doi.org/10.1002/elps.201600510
  87. Wang L., Yan H., Yang C., Li Z., Qiao F. Synthesis of mimic molecularly imprinted ordered mesoporous silica adsorbent by thermally reversible semicovalent approach for pipette-tip solid-phase extraction-liquid chromatography fluorescence determination of estradiol in milk // J. Chromatogr. A. 2016. V. 1456. P. 58. https://doi.org/10.1016/j.chroma.2016.06.010
  88. Du K., Li J., Gao X., Chang Y. Ultrasound-enhanced matrix solid-phase dispersion micro-extraction applying mesoporous molecular sieve SBA-15 for the determination of multiple compounds in fructus psoraleae // Sustain. Chem. Pharm. 2020. V. 15. Article 100198. https://doi.org/10.1016/j.scp.2019.100198
  89. Behbahani M., Bagheri S., Omidi F., Amini M.M. An amino-functionalized mesoporous silica (KIT-6) as a sorbent for dispersive and ultrasonication-assisted micro solid phase extraction of hippuric acid and methylhippuric acid, two biomarkers for toluene and xylene exposure // Microchim. Acta. 2018. V. 185. № 11. P. 505. https://doi.org/10.1007/s00604-018-3038-5
  90. Chen M., Lan H., Pan D., Zhang T. Hydrophobic mesoporous silica-coated solid-phase microextraction arrow system for the determination of six biogenic amines in pork and fish // Foods. 2023. V. 12. № 3. P. 578. https://doi.org/10.3390/foods12030578
  91. Chen Y., Yu Y., Wang S., Han J., Fan M., Zhao Y. et al. Molecularly imprinted polymer sheathed mesoporous silica tube as SPME fiber coating for determination of tobacco-specific nitrosamines in water // Sci. Environ. 2024. V. 906. Article 167655. https://doi.org/10.1016/j.scitotenv.2023.167655
  92. Lan H., Zhang W., Smått J.H., Koivula R.T., Hartonen K., Riekkola M.-L. Selective extraction of aliphatic amines by functionalized mesoporous silica-coated solid phase microextraction arrow // Microchim. Acta. 2019. V. 186. № 7. P. 412. https://doi.org/10.1007/s00604-019-3523-5
  93. Wang X., Rao H., Lu X., Du X. Application of sol-gel based octyl-functionalized mesoporous materials coated fiber for solid-phase microextraction // Talanta. 2013. V. 105. P. 204. https://doi.org/10.1016/j.talanta.2012.11.074
  94. Liu Y., Yang F., Yang L., Zuo G., Zhu Y., Liu X., Guo F. Determination of polycyclic aromatic hydrocarbons by solid-phase microextraction coupled to HPLC using a fiber with mesoporous silica coating // J. Anal. Chem. 2014. V. 69 № 7. P. 686. https://doi.org/10.1134/S1061934814070156
  95. Du X.Z., Wang Y.R., Tao X.J., Deng H.L. An approach to application of mesoporous hybrid as a fiber coating of solid-phase microextraction // Anal. Chim. Acta. 2005. V. 543. № 1–2. P. 9. https://doi.org/10.1016/j.aca.2005.04.018
  96. Ruiz-Jimenez J., Lan H., Leleev Y., Hartonen K., Riekkola M.L. Comparison of multiple calibration approaches for the determination of volatile organic compounds in air samples by solid phase microextraction arrow and in-tube extraction // J. Chromatogr. A. 2020. V. 1616. Article 460825. https://doi.org/10.1016/j.chroma.2019.460825
  97. Feng J., Feng J., Loussala H.M., Han S., Ji X., Li C. et al. Dendritic mesoporous silica nanospheres@porous carbon for in-tube solid-phase microextraction to detect polycyclic aromatic hydrocarbons in tea beverages // Food Chem. 2021. V. 364. Article 130379. https://doi.org/10.1016/j.foodchem.2021.130379
  98. Loussala H.M., Han S., Feng J., Sun M., Feng J., Fan J., Pei M. Mesoporous silica hybridized by ordered mesoporous carbon for in-tube solid-phase microextraction // J. Sep. Sci. 2020. V. 43. № 18. P. 3655. https://doi.org/10.1002/jssc.202000129
  99. Shirkhanloo H., Khaligh A., Mousavi H.Z., Rashidi A. Ultrasound assisted-dispersive-micro-solid phase extraction based on bulky amino bimodal mesoporous silica nanoparticles for speciation of trace manganese (II)/(VII) ions in water samples // Microchem. J. 2016. V. 124. P. 637. https://doi.org/10.1016/j.microc.2015.10.008
  100. Zhu G.T., He X.M., Li X.S., Wang S.-T., Luo Y.-B., Yuan B.-F., Feng Y.-Q. Preparation of mesoporous silica embedded pipette tips for rapid enrichment of endogenous peptides // J. Chromatogr. A. 2013. V. 1316. P. 23. https://doi.org/10.1016/j.chroma.2013.09.068
  101. Alhooshani K. Determination of nitrosamines in skin care cosmetics using Ce-SBA-15 based stir bar-supported micro-solid-phase extraction coupled with gas chromatography mass spectrometry // Arab. J. Chem. 2020. V. 13. № 1. P. 2508. https://doi.org/10.1016/j.arabjc.2018.06.004
  102. Tanimu A., Jillani S.M. S., Alluhaidan A.A., Ganiyu S.A., Alhooshani K. 4-Phenyl-1,2,3-triazole functionalized mesoporous silica SBA-15 as sorbent in an efficient stir bar-supported micro-solid-phase extraction strategy for highly to moderately polar phenols // Talanta. 2019. V. 194. P. 377. https://doi.org/10.1016/j.talanta.2018.10.012
  103. Tanimu A., Alhooshani K. n-Sulfonyl-4-hydroxymethyl-1,2,3-triazole functionalized SBA-15: a porous organic-inorganic material for trace-level phenolic compounds extraction from water samples by stir bar-supported micro-solid-phase extraction // Microchem. J. 2020. V. 159. Article 105410. https://doi.org/10.1016/j.microc.2020.105410
  104. Arthur C.L., Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers // Anal. Chem. 1990. V. 62. № 19. P. 2145. https://doi.org/0003-2700/90/0362-2145$02.50/0
  105. Sajid M., Khaled N.M., Rutkowska M., Szczepańska N., Namieśnik J., Płotka-Wasylka J. Solid phase microextraction: apparatus, sorbent materials, and application // Crit. Rev. Anal. Chem. 2019. V. 49. № 3. P. 271. https://doi.org/10.1080/10408347.2018.1517035
  106. Sun M., Han S., Maloko L.H., Feng J., Li C., Ji X. et al. Graphene oxide-functionalized mesoporous silica for online in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons from honey and detection by high performance liquid chromatography-diode array detector // Microchem. J. 2021. V. 166. Article 106263. https://doi.org/10.1016/j.microc.2021.106263
  107. Andrade-Eiroa A., Canle M., Leroy-Cancellieri V., Cerdà V. Solid-phase extraction of organic compounds: A critical review. Part II. // Trends Anal. Chem. 2016. V. 80. P. 655. https://doi.org/10.1016/j.trac.2015.08.014
  108. Barker S.A., Long A.R., Short C.R. Isolation of drug residues from tissues by solid phase dispersion // J. Chromatogr. 1989. V. 475. P. 353. https://doi.org/10.1016/s0021-9673(01)89689-8
  109. Barker S.A. Matrix solid phase dispersion (MSPD) // J. Biochem. Biophys. Methods. 2007. V. 70. № 2. P. 151. https://doi.org/10.1016/j.jbbm.2006.06.005
  110. Santos L.F. S., de Jesus R.A., Costa J.A. S., Gouveia L.G. T., de Mesquita M.E., Navickiene S. Evaluation of MCM-41 and MCM-48 mesoporous materials as sorbents in matrix solid phase dispersion method for the determination of pesticides in Soursop Fruit (Annona Muricata) // Inorg. Chem. Commun. 2019. V. 101. P. 45. https://doi.org/10.1016/j.inoche.2019.01.013
  111. Cao W., Cao J., Ye L. H., Xu J.J., Hu S.S., Peng L.Q. Synthesis and application of mesoporous molecular sieve for miniaturized matrix solid-phase dispersion extraction of bioactive flavonoids from toothpaste, plant, and saliva // Electrophoresis. 2015. V. 36. № 23. P. 2951. https://doi.org/10.1002/elps.201500330
  112. Cao W., Ye L.H., Cao J., Xu J.-J., Peng L.-Q., Zhu Q.-Y. et al. Quantitative analysis of flavanones from citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry // J. Chromatogr. A. 2015. V. 1406. P. 68. https://doi.org/10.1016/j.chroma.2015.06.035
  113. Cao W., Hu S.S., Ye L.H., Cao J., Pang X.-Q., Xu J.-J. Trace matrix solid phase dispersion using a molecular sieve as the sorbent for the determination of flavonoids in fruit peels by ultra-performance liquid chromatography // Food Chem. 2016. V. 190. P. 474. https://doi.org/10.1016/j.foodchem.2015.05.133
  114. Casado N., Morante-Zarcero S., Pérez-Quintanilla D., Câmara J.S., Sierra I. Dispersive solid-phase extraction of polyphenols from juice and smoothie samples using hybrid mesostructured silica followed by ultra-high-performance liquid chromatography-ion-trap tandem mass spectrometry // J. Agric. Food Chem. 2019. V. 67. № 3. P. 955. https://doi.org/10.1021/acs.jafc.8b05578
  115. Tsai W.H., Huang T.C., Huang J.J., Hsue Y.H., Chuang H.Y. Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection // J. Chromatogr. A. 2009. V. 1216. № 12. P. 2263. https://doi.org/10.1016/j.chroma.2009.01.034
  116. Scheid C., Mello W., Buchner S., Benvenutti E.V., Deon M., Merib J. Efficient analysis of polycyclic aromatic hydrocarbons by dispersive-µ-solid-phase extraction using silica-based nanostructured sorbent phases coupled to gas chromatography-mass spectrometry // Adv. Sample Prep. 2023. V. 7. P. 10070. https://doi.org/10.1016/j.sampre.2023.100070
  117. Izcara S., Morante-Zarcero S., Pérez-Quintanilla D., Sierra I. Application of a hybrid large pore mesoporous silica functionalized with β-cyclodextrin as sorbent in dispersive solid-phase extraction. Toward sustainable sample preparation protocols to determine polyphenolic compounds in Arbutus Unedo L. fruits by UHPLC-IT-MS/MS // J. Food Compos. Anal. 2023. V. 118. Article 105191. https://doi.org/10.1016/j.jfca.2023.105191
  118. Yahaya N., Sanagi M.M., Abd Aziz N., Wan Ibrahim W.A., Nur H., Loh S.H., Kamaruzaman S. Rapid MCM-41 dispersive micro-solid phase extraction coupled with LC/MS/MS for quantification of ketoconazole and voriconazole in biological fluids // Biomed. Chromatogr. 2017. V. 31. № 2. P. 3803. https://doi.org/10.1002/bmc.3803
  119. Monnier A., Schüth F., Huo Q., Kumar D., Margolese D., Maxwell R.S. et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures // Science. 1993. V. 261. P. 1299. https://doi.org/10.1126/science.261.5126.1299
  120. Zhang S., Lu F., Ma X., Yue M., Li Y., Liu J., You J. Quaternary ammonium-functionalized MCM-48 mesoporous silica as a sorbent for the dispersive solid-phase extraction of endocrine disrupting compounds in water // J. Chromatogr. A. 2018. V. 1557. P. 1. https://doi.org/10.1016/j.chroma.2018.05.011
  121. González-Gómez L., Gañán J., Morante-Zarcero S., Pérez-Quintanilla D., Sierra I. Mesostructured silicas as cation-exchange sorbents in packed or dispersive solid phase extraction for the determination of tropane alkaloids in culinary aromatics herbs by HPLC-MS/MS // Toxins. 2022. V. 14. № 3. P. 1. https://doi.org/10.3390/toxins14030218
  122. Si R., Han Y., Wu D., Qiao F., Bai L., Wang Z., Yana H. Ionic liquid-organic-functionalized ordered mesoporous silica-integrated dispersive solid-phase extraction for determination of plant growth regulators in fresh Panax Ginseng // Talanta. 2020. V. 207. Article 120274. https://doi.org/10.1016/j.talanta.2019.120247
  123. Castiglioni M., Onida B., Rivoira L., Bubba M.D., Ronchetti S., Bruzzoniti M.C. Amino groups modified SBA-15 for dispersive-solid phase extraction in the analysis of micropollutants by QuEchERS approach // J. Chromatogr. A. 2021. V. 1645. Article 462107. https://doi.org/10.1016/j.chroma.2021.462107
  124. Izcara, S., Casado N., Morante-Zarcero S., Pérez-Quintanilla D., Sierra I. Miniaturized and modified QuEChERS method with mesostructured silica as clean-up sorbent for pyrrolizidine alkaloids determination in aromatic herbs // Food Chem. 2022. V. 380. Article 132189. https://doi.org/10.1016/j.foodchem.2022.132189
  125. Terracciano R., Preianò M., Maggisano G., Pelaia C., Savino R. Hexagonal mesoporous silica as a rapid, efficient and versatile tool for MALDI-TOF MS sample preparation in clinical peptidomics analysis: A pilot study // Molecules. 2019. V. 24. № 12. Article 2311. https://doi.org/ 10.3390/molecules24122311
  126. Zhang M., Yang J., Geng X., Li Y., Zha Z., Cui S., Yang J. Magnetic adsorbent based on mesoporous silica nanoparticles for magnetic solid phase extraction of pyrethroid pesticides in water samples // J. Chromatogr. A. 2019. V. 1598. P. 20. https://doi.org/10.1016/j.chroma.2019.03.048
  127. Mehdinia A., Bahrami M., Mozaffari S. A comparative study on different functionalized mesoporous silica nanomagnetic sorbents for efficient extraction of parabens // J. Iran. Chem. Soc. 2015. V. 12. № 9. P. 1543. https://doi.org/10.1007/s13738-015-0626-8
  128. De Souza K.C., Andrade G.F., Vasconcelos I. Magnetic solid-phase extraction based on mesoporous silica-coated magnetic nanoparticles for analysis of oral antidiabetic drugs in human plasma // Mat. Sci. Eng. C. 2014. V. 40. P. 275. https://doi.org/10.1016/j.msec.2014.04.004
  129. Molaei R., Tajik H., Moradi M. Magnetic solid phase extraction based on mesoporous silica-coated iron oxide nanoparticles for simultaneous determination of biogenic amines in an Iranian traditional dairy product, Kashk // Food Control. 2019. V. 101. P. 1. https://doi.org/10.1016/j.foodcont.2019.02.011
  130. Abd Halim W.I.T., Abd Hamid M.A., Aziz M.Y., Din A.T.M., Zain N.N.M., Kamaruzaman S. et al. Performance analysis and green profile assessment of synthesised amino-functionalised magnetic silica nanocomposite for magnetic micro-solid phase extraction of penicillin antibiotics from milk samples // J. Food Compos. Anal. 2024. V. 127. Article 105944. https://doi.org/10.1016/j.jfca.2023.105944

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of some ordered mesoporous silicas.

Download (96KB)
3. Fig. 2. Scheme of synthesis of ordered mesoporous silica (on the example of MCM-41).

Download (144KB)
4. Fig. 3. Typical view of the output curve. VR - retention volume, σV - standard deviation of the retention volume of the substance as it moves in the sorbent.

Download (23KB)

Copyright (c) 2025 Russian Academy of Sciences