Preparation of Polymetal Powder Systems Fe–Ni–Co–Al in Aqueous Solutions and Their Physical Characteristics
- Authors: Dresvyannikov A.F.1, Kolpakov M.E.1, Ermolaeva E.A.1
-
Affiliations:
- Kazan National Research Technological University
- Issue: Vol 97, No 10 (2023)
- Pages: 1421-1429
- Section: ФИЗИЧЕСКАЯ ХИМИЯ РАСТВОРОВ
- Submitted: 26.02.2025
- Published: 01.10.2023
- URL: https://rjonco.com/0044-4537/article/view/668640
- DOI: https://doi.org/10.31857/S0044453723100072
- EDN: https://elibrary.ru/TQMNAS
- ID: 668640
Cite item
Abstract
The possibility of preparation of a polymetallic dispersed Fe–Ni–Co–Al system in aqueous solutions by a redox process between iron(III), nickel(II), cobalt(II) ions and aluminum microparticles in aqueous solutions is shown. In this case, a structure is formed in the aqueous solution, which, from the standpoint of the phase composition, is a mechanical mixture of elemental metals. It has been found that the synthesized Fe–Ni–Co–Al system consists of metallic aluminum particles coated with elemental metals (iron, nickel, and cobalt) with a minimum content of the oxide phase. Additional HF modification of the studied sample of the polymetallic system in low pressure inductive discharge plasma leads to the formation of a number of intermetallic compounds, mainly CoFe (~60%) and FeNi (~15%), and also ensures particle spheroidization. The resulting intermetallic powder composition is potentially suitable for use in additive manufacturing technologies.
Keywords
About the authors
A. F. Dresvyannikov
Kazan National Research Technological University
Email: alfedr@kstu.ru
420015, Kazan, Russia
M. E. Kolpakov
Kazan National Research Technological University
Email: alfedr@kstu.ru
420015, Kazan, Russia
E. A. Ermolaeva
Kazan National Research Technological University
Author for correspondence.
Email: alfedr@kstu.ru
420015, Kazan, Russia
References
- Lasalmonie A. // Intermetallics. 2006. V. 14. № 10–11. P. 1123. https://doi.org/10.1016/j.intermet.2006.01.064
- Liu W., Dupont J.N. // Metall. Mater. Trans. A. 2003. V. 34. P. 2633.https://doi.org/10.1007/s11661-003-0022-3
- Chaudhary V., Nartu M.S.K.K.Y., Mantri S.A. et al. // J. Alloys Compd. 2020. V. 823. 153817. https://doi.org/10.1016/j.jallcom.2020.153817
- Paganotti A., Bessa C.V.X., Silva C.C.S. et al. // Mater. Chem. Phys. 2021. V. 261. 124215. https://doi.org/10.1016/j.matchemphys.2020.124215
- Tanaka Y., Kainuma R., Omori T., Ishida K. // Mater. Today: Proc. 2015. V. 2. P. S485. https://doi.org/10.1016/j.matpr.2015.07.333
- Tan X., Tang Y., Tan Y. et al. // Intermetallics. 2020. V. 126. 106898. https://doi.org/10.1016/j.intermet.2020.106898
- LiP., WangA., Liu C.T. // Ibid. 2017. V. 87. P. 21. https://doi.org/10.1016/j.intermet.2017.04.007
- Agustianingrum M.P., Yoshida S., Tsuji N., Park N. // J. Alloys Compd. 2019. V. 781. P. 866. https://doi.org/10.1016/j.jallcom.2018.12.065
- Zuo T.T., Li R.B., Ren X.J., Zhang Y. // J. Magn. Magn Mater. 2014. V. 371. P. 60. https://doi.org/10.1016/j.jmmm.2014.07.023
- Betancourt-Cantera L.G., Sánchez-De Jesús F., Bolarín-Miró A.M. et al. // J. Mater. Res. Technol. 2020. V. 9. № 6. P. 14969. https://doi.org/10.1016/j.jmrt.2020.10.068
- Shafi K., Gedanken A., Prozorov R. et al. // J. Mater. Res. 2000. V. 15. № 2. P. 332. https://doi.org/10.1557/JMR.2000.0052
- Solanki V., Lebedev O.I., Seikh M.M. et al. // J. Magn. Magn. Mater. 2016. V. 420. P. 39. https://doi.org/10.1016/j.jmmm.2016.06.087
- Csik A., Vad K., Tóth-Kádár E., László P. // Electrochem. Commun. 2009. V. 11. P. 1289. https://doi.org/10.1016/j.elecom.2009.04.027
- Zhang Y., Ma R., Feng S. et al. // J. Magn. Magn. Mater. 2020. V. 497. 165982. https://doi.org/10.1016/j.jmmm.2019.165982
- Gayathri A., Kiruthika S., Selvarani V. et al. // Fuel. 2022. V. 321. 124059. https://doi.org/10.1016/j.fuel.2022.124059
- Wang Z., Cheng L., Zhang R. et al. // J. Alloys Compd. 2021. V. 857. 158249. https://doi.org/10.1016/j.jallcom.2020.158249
- Коч К., Овидько И.А., Сил С., Вепрек С. Конструкционные нанокристаллические материалы. Научные основы и приложения / Пер. с англ. под ред. М.Ю. Гуткина. М.: Физматлит, 2012. 447 с. [Koch C., Ovid’ko I.A., Seal S., Veprek S. Structural Nanocrystalline Materials. Fundamentals and Applications. Cambridge University Press. 2007. 364 p.]
- Дресвянников А.Ф., Колпаков М.Е. // Журн. физ. химии. 2006. Т. 80. № 2. С. 321. [Dresvyannikov A.F., Kolpakov M.E. // Russ. J. Phys. Chem. A. 2006. V. 80. № 2. P. 254. https://doi.org/10.1134/S0036024406020245]
- Дресвянников А.Ф., Колпаков М.Е., Ермолаева Е.А. // Там же. 2020. Т. 94. № 6. С. 823. [Dresvyannikov A.F., Kolpakov M.E., Ermolaeva E.A. // Ibid. A. 2020. V. 94. № 6. P. 1098. https://doi.org/10.1134/S0036024420060084]
- Дресвянников А.Ф., Колпаков М.Е. // Журн. общ. химии. 2005. Т. 75. № 2. С. 177. [Dresvyannikov A.F., Kolpakov M.E. // Russ. J. Gen. Chem. 2005. V. 75. № 2. P. 155. https://link.springer.com/article/10.1007/s11176-005-0190-5]
- Tseng Y.-T., Wu G.-X., Lin J.-C. et al. // J. Alloys Compd. 2021. V. 885. 160873. https://doi.org/10.1016/j.jallcom.2021.160873
- Torabinejad V., Aliofkhazraei M., Assareh S. et al. // Ibid. 2016. V. 691. P. 841. https://doi.org/10.1016/j.jallcom.2016.08.329
- Hessami S., Tobias C.W. // J. Electrochem. Soc. 1989. V. 136. P. 3611.https://doi.org/10.1149/1.2096519
- Bertazzoli R., Pletcher D. // Electrochim. Acta. 1993. V. 38. № 5. P. 671. https://doi.org/10.1016/0013-4686(93)80237-T
- Martinez-Blanco D., Gorria P., Blanco J.A. et al. // J. Phys.: Condens. Matter. 2008. V. 20. P. 335213. https://doi.org/10.1088/0953-8984/20/33/335213
- Дресвянников А.Ф., Колпаков М.Е., Миронов М.М. // Физика и химия обраб. матер. 2010. № 3. С.58. [Dresvyannikov A.F., Kolpakov M.E., Mironov M.M. // Inorg. Mater.: Appl. Res. 2012. V. 3. № 3. P. 193. https://doi.org/10.1134/S2075113311030075]
Supplementary files
