Potassium–Sodium Ceramics Modified with Metal Oxide Additives: Synthesis, Microstructure, and Properties
- Authors: Kaleva G.M.1, Politova E.D.1, Mosunov A.V.2, Stefanovich S.Y.2, Sadovskaya N.V.3
-
Affiliations:
- Semenov Institute of Chemical Physics
- Faculty of Chemistry, Moscow State University
- Institute of Crystallography, Federal Research Center of Crystallography and Photonics, Russian Academy of Sciences
- Issue: Vol 97, No 1 (2023)
- Pages: 95-100
- Section: СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ
- Submitted: 27.02.2025
- Published: 01.01.2023
- URL: https://rjonco.com/0044-4537/article/view/668890
- DOI: https://doi.org/10.31857/S0044453723010144
- EDN: https://elibrary.ru/BCBOYX
- ID: 668890
Cite item
Abstract
Single phase ceramic samples of new compounds (1 − x)(K0.5Na0.5)NbO3−xLa(Ag0.5Sb0.5)O3 (x = 0–0.15), modified by metal oxide additives ZnO, CuO, and MnO2, are prepared via a solid state reaction. The crystal structure, microstructure, and dielectric and ferroelectric properties of the samples are studied. It is established that a phase with a perovskite structure and an orthorhombic unit cell formed in each sample. Ferroelectric phase transitions are confirmed via dielectric spectroscopy. Generation of the second harmonic is observed, along with a drop in the temperature of transitions from the ferroelectric orthorhombic phase to the ferroelectric tetragonal phase, and then to the cubic paraelectric phase.
About the authors
G. M. Kaleva
Semenov Institute of Chemical Physics
Email: kaleva@nifhi.ru
119991, Moscow, Russia
E. D. Politova
Semenov Institute of Chemical Physics
Email: kaleva@nifhi.ru
119991, Moscow, Russia
A. V. Mosunov
Faculty of Chemistry, Moscow State University
Email: kaleva@nifhi.ru
119991, Moscow, Russia
S. Yu. Stefanovich
Faculty of Chemistry, Moscow State University
Email: kaleva@nifhi.ru
119991, Moscow, Russia
N. V. Sadovskaya
Institute of Crystallography, Federal Research Center of Crystallography and Photonics, Russian Academy of Sciences
Author for correspondence.
Email: kaleva@nifhi.ru
119333, Moscow, Russia
References
- Gupta V., Sharma M., and Thakur N. // J. Intel. Mat. Sys. Str. 2010. V. 21. P. 1227.
- Sodano H.A., Henry A., Inman D.J., and Park G. // Ibid. 2005. V. 16. P. 799.
- Sodano H.A., Park G., and Inman D.J. Estimation of electric charge output for piezoelectric energy harvesting // Strain. 2004. V. 40. P. 49.
- Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. Москва: Химия, 1985, 256 с.
- Eitel R.E., Randall C.A., Shrout T.R., and Park S.-E. // Jpn. J. Appl. Phys. 2002. V. 41. Part 1. P. 2099.
- Eitel R.E., Zhang S.J., Shrout T.R. et al. // J. Appl. Phys. 2004. V. 96. P. 2828.
- Zhang Sh.J., Eitel R.E., Randall C.A. et al. // Appl. Phys. Letters. 2005. V. 86. P. 262904.
- Iniguez J., Vandebilt D., and Bellaiche L. // Phys. Rev. B. 2003. V. 67. P. 224I07–1.
- Maeder M.D., Damjanovic D., and Setter N. // J. Electroceram. 2004. V. 13. P. 385.
- Saito Y., Takao H., Tani I. et al. // Nature. 2004. V. 432. P. 84.
- Takenaka T., Nagata H., Hiruma Y. et al. // J. Electroceram. 2007. V. 19. P. 259.
- Takenaka T., Nagata H., and Hiruma Y. // Jpn. J. Appl. Phys. 2008. V. 47. P. 3787.
- Rödel J., Jo W., Seifert T.P., Anton E.-M. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 1153.
- Panda P.K. // J. Mater. Sci. 2009. V. 44. P. 5049.
- Zhen Y.H. and Li J.F. // J. Am. Ceram. Soc. 2006. V. 89. P. 3669.
- Bernard J., Bencan A., Rojac T. et al. // Ibid. 2008. V. 91. P. 2409.
- Guo Y., Kakimoto K.-I., and Ohsato H. // Appl. Phys. Lett. 2004. V. 85. P. 4121.
- Ming B.Q., Wang J.F., Qi P., and Zang G.Z. // J. Appl. Phys. 2007. V. 101. P. 054103.
- Wang K. and Li J.F. // Adv. Funct. Mater. 2010. V. 20. P. 1924.
- Singh K.C., Jiten C., Laishram R. et al. // J. Alloy. Compd. 2010. V. 496. P. 717.
- Zhao P., Zhang B. P., and Li J.F. // J. Am. Ceram. Soc. 2008. V. 91. P. 1690.
- Jiang X.P., Yang Q., Yu Z.D. et al. // J. Alloy Compd. 2010 V. 493. P. 276.
- Lin D., Kwok K.W., and Chan H.L.W. // J. Appl. Phys. 2009. V. 106. P. 034102.
- Yoon M.S., Khansur N.H., Lee W.J. et al. // J. Advanced Materials Research. 2011. V. 287–290. P. 801.
- Sun X., Chen J., Yu R. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 130.
- Sun X., Deng J., Sun C. et al. // J. Am. Ceram. Soc. 2009. V. 92. № 8. P. 1853.
- Hao J., Xu Z., Chua R. et al. // Materials Chemistry and Physics. 2009. V. 118. Issue 1. P. 229.
- Politova E.D., Golubko N.V., Kaleva G.M. et al. // J. of Advanced Dielectrics. 2018. V. 8. № 1. P. 1850004.
- Politova E.D., Golubko N.V., Kaleva G.M. et al. // Ferroelectrics. 2019. V. 538. P. 45.
- Kim J.-W., Ryu J., Hahn B.-D. et al. // J. of the Korean Physical Society. 2013. V. 63. № 12. P. 2296.
- Политова Е.Д., Калева Г.М., Мосунов А.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1156.
- Politova E.D., Kaleva G.M., Mosunov A.V. et al. // Diffusion Foundations. 2020. V. 27. P. 90.
- Kumar R., Kumar A., Singh S. // Sustainable Energy Fuels. 2018. V. 2. P. 2698.
- Белышева Т.В., Гатин А.К., Гришин М.В. и др. // Хим. физика. 2015. Т. 34. № 9. С. 56.
- Громов В.Ф., Герасимов Г.Н., Белышева Т.В. и др. // Там же. 2018. Т. 37. № 1. С. 76.
- Lee H.J, Zhang S.H. Lead-Free Piezoelectrics. N.Y.: Springer, 2012. 291 p.
Supplementary files
