Characteristic parameters of unsaturated fatty acid residues upon liquid chromatography of lipids in media with silver ions
- Authors: Pchelkin V.P.1
-
Affiliations:
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences
- Issue: Vol 99, No 3 (2025)
- Pages: 433–441
- Section: ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ РАЗДЕЛЕНИЯ. ХРОМАТОГРАФИЯ
- Submitted: 03.06.2025
- Published: 29.05.2025
- URL: https://rjonco.com/0044-4537/article/view/682022
- DOI: https://doi.org/10.31857/S0044453725030081
- EDN: https://elibrary.ru/ECEVYB
- ID: 682022
Cite item
Abstract
The results of liquid chromatography of a complex mixture of unsaturated lipid molecules as the basis of the hydrophobic matrix of biomembranes are summarized. The data of relative retention of such lipids, which included residues of the most important fatty acids, allowed calculating the most characteristic general parameters that satisfactorily determine their behavior when silver salt is introduced into a planar or column liquid chromatographic system in order to drastically increase the selectivity of separation of unsaturated lipid molecules from each other. A variant of quantitative estimation of the relationship between the level of selectivity of separation of particular molecules of natural lipids from each other and the proposed parameters of their constituent fatty acid residues, which are calculated on the basis of variations in the chemical potential of such molecules when silver appears in this system, is proposed.
Keywords
Full Text

About the authors
V. P. Pchelkin
K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences
Author for correspondence.
Email: bas1953@mail.ru
Russian Federation, Moscow
References
- Zhang C.-W., Wang C.-Z., Tao R., Ye J.-Z. // J. Chromatogr. A. 2019. V. 1590. P. 58. doi: 10.1016/j.chroma.2019.01.047
- Lu H., Zhu H., Dong H., et al. // J. Chromatogr. A. 2019. V. 1613. № 460660. P. 1–7 doi: 10.1016/j.chroma.2019.460660
- Huang S., Qui R., Fang Z., et al. // Anal. Chem. 2022. V. 94. P. 13710. doi: 10.1021/acs.analchem.2c01627
- Ullah Q. // J. Planar Chromatogr. Modern TLC. 2020. V. 33. P. 329. doi: 10.1007/s00764-020-00048-7
- Yoon J., Choi E., Min K. // J. Phys. Chem. A. 2021. V. 125. № 46. P. 10103. doi: 10.1021/acs.jpca.1c05292
- Hamieh T. // J. Chromatogr. Sci. 2022. V. 60. № 2. P. 126. doi: 10.1093/chromsci/bmab066
- Petersen M.L., Hirsch J. // J. Lipid. Res. 1959. V. 1. P. 152.
- Ren Q.H., Rybicki M., Sauer J. // J. Phys. Chem. C. 2020. V. 124. № 18. P. 10067. doi: 10.1021/acs.jpcc.0c003061
- Vysotsky Y.B., Kartashynska E.S., Vollhardt D., et al. // J. Phys. Chem. C. 2020. V. 124. № 25. P. 13809. doi: 10.1021/acs.jpcc.0c03785
- Leasor C., Chen K.-H., Closson T., Li Z. // J. Phys. Chem. C. 2019. V. 123. № 22. P. 13600. doi: 10.1021/acs.jpcc.9b01705
- Nikolova-Damyanova B., Christie W.W., Herslöf B.G. // J. Chromatogr. A. 1993. V. 653. № 1. P. 15.
- Vahmani P., Rolland D.C., Gzyl K.E., Dugan M.E.R. // Lipids. 2016. V. 51. № 12. P. 1427. doi: 10.1007/s11745-016-4207-0
- Dabrowska M., Sokalska K., Gumulka P., et al. // JPC-J. Planar Chromatogr. –Modern TLC. 2019. V. 32. № 1. P. 13. doi: 10.1556/1006.2019.32.1.2
- Пчелкин В.П., Верещагин А.Г. // Докл. АН СССР. 1991. Т. 318. № 2. С. 473.
- Pchelkin V.P., Vereshchagin A.G. // J. Chromatogr. 1991. V. 538. № 2. P. 373.
- Pchelkin V.P., Vereshchagin A.G. // J. Chromatogr. 1992. V. 603. P. 213.
- Pchelkin V.P. // Russ. J. Phys. Chem. 2000. V. 74. P. 625.
- Пчёлкин В.П. // Журн. физ. химии. 2003. Т. 77. № 9. С. 1652.
- Пчёлкин В.П. // Журн. физ. химии. 2016. V. 90. № 9. P. 409. doi: 10.6878/S1004445371690235
- Pchelkin V.P. // J. Anal. Chem. 2020. V. 75. № 5. P. 615. doi: 10.1134/S1061934820050159
- Pchelkin V.P. // Current Chromatogr. 2022. V. 9. № 2. P. 1. DOI: 10.2174/ 2213240609666220120120113938
- Mahato P., Mandal K., Agrawai S., et al. // J. Phys. Chem. Lett. 2024. V. 15. № 2. P. 461. doi: 10.1021/acs.lett.3c03188
- Bhowmick S., Maisser A., Suleimanov Y.V., et al. // J. Phys. Chem. A. 2022. V. 128. № 37. P. 6376. doi: 10.1021/acs.jpca.2c02809
- Andryushechkin B.V., Pavlova T.V., Shevlyuga V.M. // Phys. Chem. Chem. Phys. 2024. V. 26. № 2. P. 1322. doi: 10.1039/D3CP04962K
- Yasumura S., Kato T., Toyao T., et al. // Phys. Chem. Chem. Phys. 2023. V. 25. P. 8524. doi: 10.1039/d2cp04761f
- Gao H., Bi S., Chai J., et al. // J. Chrom. A. 2024. V. 1714. № 464579. P. 1. doi: 10.1016/j.chroma.2023.464579
- Arroyave J.M., Ambrusi R.E., Pronsato M.E., et al. // J. Phys. Chem. B. 2020. V. 124. № 12. P. 2425. doi: 10.1021/acs.jpcb.9b10430
- Bigi F., Cera G., Maggi R., et al. // J. Phys. Chem. A. 2021. V. 125. № 46. P. 10035. doi: 10.1021/acs.jpca.1c07253
- Jayalatharachchi V., MacLeod J., Lipton-Duffin J. // J. Phys. Chem. C. 2021. V. 125. № 26. P. 14326. doi: 10.1021/acs.jpcc.1c02581
- Krzykawska A., Szwed M., Ossowski J., Cyganik P. // J. Phys. Chem. C. 2018. V. 122. № 1. P. 919. doi: 10.1021/acs.jpcc.7b10806
- Du Z., Ding P., Tai X., et al. // Langmuir. 2018. V. 34. № 23. P. 6922. doi: 10.1021/acs.langmuir.8b00640
- Rathnakumar S., Bhaskar S., Sivaramakrishnan V., et al. // Anal. Chem. 2024. V. 96. № 10. P. 4005. DOI: 1021/acs.analchem.3c01441
Supplementary files
