Physicochemical and electrochemical properties of lithium trifluoromethanesulfonate solutions in sulfolane-1.3-dioxolane mixtures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The physicochemical properties (specific ion conductivity, viscosity, and density) of 1.0M solutions of LiSO3CF3 in sulfolane – 1.3-dioxolane mixtures in the temperature range of 30–50°C are studied. The specific ion conductivity isotherms is shown to pass through their maximum at a 1.3-dioxolane content of about 60 mol % (1.75×10–3 Ω–1 cm–1, 30°C). It is found that the viscosity and corrected (for viscosity) conductivity of the studied solutions decrease as the 1.3-dioxolane content increases and the temperature grows. It is concluded that the activation energies of the conductivity and viscous flow, as well as their ratio, decrease as the 1.3-dioxolane content increases. Self-diffusion coefficients of all components of the studied electrolyte solutions are estimated by NMR spectroscopy, and lithium cation transport numbers are calculated. The transport number of lithium cation is found to vary nonlinearly depending on the solution composition, viz. the maximum value (0.56) is reached when the ratio of sulfolane:1.3-dioxolane ≈ 2:3, which correlates with the position of the maximum on the conductivity isotherm. The melting points of 1.0M LiSO3CF3 solutions in mixtures of sulfolane with 1.3-dioxolane are shown to decrease as the content of the latter increases. It is noted that when the content of 1.3-dioxolane is more than 50 mol %, electrolyte solutions are in the liquid phase state at temperatures below –70°С.

Full Text

Restricted Access

About the authors

L. V. Sheina

Ufa Institute of Chemistry of the Ufa Federal Research Center, Russian Academy of Sciences

Author for correspondence.
Email: sheina.l.v@gmail.com
Russian Federation, Ufa

E. V. Karaseva

Ufa Institute of Chemistry of the Ufa Federal Research Center, Russian Academy of Sciences

Email: karaseva@anrb.ru
Russian Federation, Ufa

A. N. Lobov

Ufa Institute of Chemistry of the Ufa Federal Research Center, Russian Academy of Sciences

Email: sheina.l.v@gmail.com
Russian Federation, Ufa

V. S. Kolosnitsyn

Ufa Institute of Chemistry of the Ufa Federal Research Center, Russian Academy of Sciences

Email: sheina.l.v@gmail.com
Russian Federation, Ufa

References

  1. Lin Y., Huang S., Zhong L., et al. // Energy Storage Materials. 2021. V. 34. P. 128. https:// doi.org/10.1016/j.ensm.2020.09.009
  2. Wang L., Ye Y., Chen N., et al. // Adv. Funct. Mater. 2018. V. 28. 1800919. https://doi.org/10.1002/adfm.201800919
  3. Liu Y., Elias Y., Meng J., et al. // Joule. 2021. V. 5. № 9. P. 2323. https://doi.org/10.1016/j.joule.2021.06.009
  4. Zhang S., Ueno K., Dokko K., Watanabe M. // Adv. Energy Mater. 2015. V. 5. 1500117. doi: 10.1002/aenm.201500117
  5. Abouimrane A., Belharouak I., Amine K. // Electrochem. Com. 2009. V. 11. P. 1073. 10.1016/j.elecom.2009.03.020' target='_blank'>https://doi: 10.1016/j.elecom.2009.03.020
  6. Hofmann A., Schulz M., Indris S., et al. // Electrochim. Acta. 2014. V. 147. P. 704. http://dx.doi.org/10.1016/j.electacta.2014.09.111
  7. Wu W., Bai Y., Wang X., Wu C. // Chinese Chemical Letters. 2021. V. 32. P. 1309. https://doi.org/10.1016/j.cclet.2020.10.009
  8. Ugata Y., Chen Y., Sasagawa S., et al. // J. Phys. Chem. C. 2022. V. 126. P. 10024. https://doi.org/10.1021/acs.jpcc.2c02922
  9. Kim H.S., Jeong C.S. // Bull. Korean Chem. Soc. 2011. V. 32. № 10. P. 3682. http://dx.doi.org/10.5012/bkcs.2011.32.10.3682
  10. Zhong H., Wang C., Xu Z., et al. // Scientific Reports. 2016. V. 6. № 1. 25484. doi: 10.1038/srep25484
  11. Raccichini R., Dibden J.W., Brew A., et al. // J. Phys. Chem. B. 2018. V. 122. № 1. P. 267. https://doi.org/10.1021/acs.jpcb.7b09614
  12. Mi Y.Q., Deng W., He C., et al. // Angew. Chem. Int. Ed. 2023. V. 62. e202218621. doi.org/10.1002/anie.202218621
  13. Andrea M.L., Giorgio F.D., Soavi F., et al. // ChemElectroChem. 2018. V. 5. № 9. P. 1272. https://doi.org/10.1002/celc.201701348
  14. Barghamadi M., Best A.S., Hollenkamp A.F., et al. // Electrochim. Acta. 2016. V. 222. P. 257. 10.1016/j.electacta.2016.10.169' target='_blank'>http://dx.doi.org/doi: 10.1016/j.electacta.2016.10.169
  15. Mikhaylik Y.V. Electrolytes for Lithium Sulfur Cells: US Patent 7354680 B2. 2008.
  16. Aurbach D., Pollak E., Elazari R., et al. // J. Electrochem. Soc. 2009. V. 156. № 8. P. A694. doi: 10.1149/1.3148721
  17. Parfitt C.E. Characterisation, Modelling and Management of Lithium-Sulphur Batteries for Spacecraft Applications. PhD thesis, University of Warwick, 2012. 308 p. http://go.warwick.ac.uk/wrap/57030/
  18. Колосницын В.С., Слободчикова Н.В., Шеина Л.В. // Журн. прикл. химии. 2000. Т. 73. № 7. С. 1089. [Kolosnitsyn V.S., Slobodchikova N.V., Sheina L.V. // Russ. J. Applied Chemistry. 2000. V. 73. № 7. P. 1152.]
  19. Колосницын В.С., Слободчикова Н.В., Каричковская Н.В., Шеина Л.В. // Russ. J. Applied Chemistry. 2001. Т. 74. № 4. С. 560. [Kolosnitsyn V.S., Slobodchikova N.V., Karichkovskaya N.V., Sheina L.V. // Russ. J. Applied Chemistry. 2001. V. 74. № 4. Р. 576.]
  20. Колосницын В.С., Слободчикова Н.В., Мочалов С.Э., Каричковская Н.В. // Электрохимия. 2001. Т. 37. № 6. С. 741. [Kolosnitsyn V.S., Slobodchikova N.V., Mochalov S.E., Karichkovskaya N.V. // Russ. J. Electrochem. 2001. V. 37. № 6. Р. 632. doi: 10.1023/A:1016630904258]
  21. Karaseva E.V., Kuzmina E.V., Li B.-Q., Zhang Q., Kolosnitsyn V.S. // J. Energy Chemistry. 2024. V. 95. P. 231. https://doi.org/10.1016/j.jechem.2024.02.052
  22. Younesi R., Veith G.M., Johansson P., et al. // Energy Environ. Sci. 2015. V. 8. P. 1905. doi: 10.1039/c5ee01215e
  23. Dong L., Zhong S., Yuan B., et al. // Research. 2022. V. 2022. 9837586. doi: 10.34133/2022/9837586
  24. Lu D., Xu G., Hu Z., et al. // Small Methods. 2019. V. 3. 1900546. doi: 10.1002/smtd.201900546
  25. Ugata Y., Sasagawa S., Tatara R., et al. // J. Phys. Chem. B. 2021. V. 125. P. 6600. https://doi.org/10.1021/acs.jpcb.1c01361
  26. Hess S., Wohlfahrt-Mehrens M., and Wachtler M. // Electrochem. Soc. 2015. V. 162. № 2. P. A3084. doi: 10.1149/2.0121502jes
  27. Cataldo F. // Eur. Chem. Bull. 2015. V. 4. № 2. P. 92. doi: 10.17628/ECB.2015.4.92
  28. Xu K. // Chemical Reviews. 2004. V. 104. № 10. P. 4303. https://doi.org/10.1021/cr030203g
  29. Sheina L.V., Karaseva E.V., Kolosnitsyn V.S. // Rus. J. Phys. Chem. A. 2024. V. 98. P. 431. https://doi.org/10.1134/S0036024424030269
  30. Papaioannou D., Bridakis M., Panayiotou C.G. // J. Chem. Eng. Data. 1993. V. 38. P. 370. https://pubs.acs.org/doi/pdf/10.1021/je00011a010
  31. Vraneš M., Zec N., Tot A., Papović S., Dožić S., Gadžuric S. // J. Chem. Thermodynamics. 2014. V. 68. P. 98. http://dx.doi.org/10.1016/j.jct.2013.08.034
  32. Nakanishi A., Ueno K., Watanabe D., et al. // J. Phys. Chem. C. 2019. V. 123. P. 14229. doi: 10.1021/acs.jpcc.9b
  33. Lacey M.J., Jeschull F., Edström K., Brandell D. // J. Phys. Chem. C. 2014. V. 118. № 45. P. 25890. doi: 10.1021/jp508137m
  34. Yoon S. // Int. J. Applied Engineering Research. 2018. V. 13. № 18. Р. 13547.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Additional material
Download (430KB)
3. Fig. 1. Isotherms of specific electrical conductivity (a), dynamic viscosity (b), density (c) and corrected electrical conductivity (d) of 1.0 M LiSO₃CF₃ solutions in SL:DOL mixtures. Temperature (±0.1°C) is indicated in the legends. Measurement errors of physicochemical quantities did not exceed 0.5–1.0%.

Download (346KB)
4. Fig. 2. Deviations in viscosity and excess molar volume of SL:DOL mixtures (according to [19]) (a) and deviations in viscosity, specific and corrected electrical conductivity of 1.0 M LiSO₃CF₃ solutions in SL:DOL mixtures (b).

Download (159KB)
5. Fig. 3. Change in the chemical shift (δ) of ⁷Li and deviation of the chemical shift (Δδ) (a), dependences of the specific electrical conductivity and transport number of the lithium cation (b) in 1.0 M LiSO₃CF₃ solutions in SL:DOL mixtures on the composition.

Download (156KB)
6. Fig. 4. Relative diffusion coefficients of lithium cation in 1.0 M LiSO₃CF₃ solutions in SL:DOL mixtures.

Download (215KB)
7. Fig. 5. DSC heating and cooling curves of 1.0 M LiSO₃CF₃ solutions in sulfolane–1.3-dioxolane (DOL) mixtures (mol %).

Download (220KB)
8. Fig. 6. Discharge and charge dependences of the first cycle (left), change in discharge capacity and Coulomb cycling efficiency (right) of the LSC with 1.0 M LiCF₃SO₃ solutions in sulfolane (SL) and in a mixture of sulfolane (42 mol.%):1.3-dioxolane (58 mol.%) (SL:DOL).

Download (253KB)

Copyright (c) 2025 Russian Academy of Sciences