Modeling of crystallization processes of aviation fuel with different content of aromatic hydrocarbons

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of additives of some organic substances on the crystallization onset temperatures of kerosene fractions (KF) obtained from crude oil (straight-run or SRKF) and in the process of catalytic cracking of heavy oil residues (HKF) is studied by the method of thermodynamic modeling. Normal paraffins CnH2n+2 (n = 9, 11, 16) are used as additives to the KFs, and m-ethylbutylbenzene is used as an aromatic hydrocarbon. It is shown that using the UNIFAC and UNIQUAC models, one can reproduce the experimental data presented in publications and indicating that the addition of normal paraffins to HKF noticeably increases the freezing point when n is 11 and greater. For SRKF, a similar increase occurs starting from n = 16. According to the calculation results, the addition of m-ethylbutylbenzene practically does not affect the crystallization onset temperature.

Texto integral

Acesso é fechado

Sobre autores

M. Mamontov

M. V. Lomonosov Moscow State University

Autor responsável pela correspondência
Email: mmn@td.chem.msu.ru

Department of Chemistry

Rússia, Moscow

A. Oshchenko

The 25th State Research Institute of Chemmotology of the Ministry of Defense of Russia

Email: mmn@td.chem.msu.ru
Rússia, Moscow

Bibliografia

  1. Kittel H., Straka P., Šimaček P., Kadleček D. // Petroleum Science and Technology. 2022. v. 41 (5). P. 507. doi: 10.1080/10916466.2022.2061000
  2. Zabarnick S., Widmor N. // Energy & Fuels. 2001. V. 15. P. 1447. doi: 10.1021/ef010074b
  3. Coutinho J.A.P., Andersen S.I., Stenby E.H. // Fluid Ph. Eq. 1995. v. 103 p. 23. doi: 10.1016/0378-3812(94)02600-6
  4. Coutinho J.A.P. // Ind. Eng. Chem. Res. 1998. v. 37. p. 4870. doi: 10.1021/ie980340h
  5. Coutinho J.A.P., Dauphin C., Daridon J.L. // Fuel. 2000. v. 79. p. 607. doi: 10.1016/S0016-2361(99)00188-X
  6. Coutinho J.A.P. // Energy & Fuels. 2000. v. 14. p. 625. doi: 10.1021/ef990203c
  7. Улитько А.В., Волгин С.Н., Ощенко А.П., Соловьев А.В. // Тр. 25 Гос. НИИ МО РФ. 2022. Вып. 60. Т. 75–80 / Под ред. В.А. Маркина. 512 c.
  8. Weidlicht U., Gmehling J. // Ind. Eng. Chem. Res. 1987. v. 26. p. 1372. doi: 10.1021/ie00067a018
  9. Gmehling J., Li J., Schiller M. // Ind. Eng. Chem. Res. 1993. v. 32. p. 178. doi: 10.1021/ie00013a024
  10. G’mehling J., Lohmann J., Jakob A., et al. // Ind. Eng. Chem. Res. 1998. v. 37. p. 4876. doi: 10.1021/ie980347z
  11. Morgan D.L., Kobayashi R. // Fluid Ph. Eq. 1994. v. 94. p. 51. doi: 10.1016/0378-3812(94)87051-9
  12. Болотник Т.А. Новые подходы к определению ракетных керосинов в объектах окружающей среды и растениях методом газовой хромато-масс-спектрометрии. Дис. … к. х. н., МГУ им. М.В. Ломоносова, Химический ф-т, М., 2017. 160 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Freezing temperature of PCF with different amounts of dopants (w – wt. %). Points – experiment [7], lines – calculation (this work). Numbers indicate mixtures with different dopants: (1, ×) – cetane C₁₆H₃₄; (2, ○) – undecane C₁₁H₂₄; (3, ▲) – nonane C₉H₂₀; (4, ■) – m-ethylbutylbenzene C₁₂H₂₈. Line (3) practically merges with line (4) at w < 5 wt. %.

Baixar (86KB)
3. Fig. 2. Freezing temperature of GCF with different amounts of dopants (w – wt. %). Points – experiment [7], lines – calculation (this work). Numbers indicate mixtures with different dopants: (1, ×) – cetane C₁₆H₃₄; (2, ○) – undecane C₁₁H₂₄; (3, ▲) – nonane C₉H₂₀; (4, ■) – m-ethylbutylbenzene C₁₂H₂₈. Line (3) practically merges with line (4) at w < 5 wt. %.

Baixar (96KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025