Modeling of crystallization processes of aviation fuel with different content of aromatic hydrocarbons
- Autores: Mamontov M.N.1, Oshchenko A.P.2
-
Afiliações:
- M. V. Lomonosov Moscow State University
- The 25th State Research Institute of Chemmotology of the Ministry of Defense of Russia
- Edição: Volume 99, Nº 3 (2025)
- Páginas: 420–427
- Seção: ХЕМОИНФОРМАТИКА И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ
- ##submission.dateSubmitted##: 03.06.2025
- ##submission.datePublished##: 29.05.2025
- URL: https://rjonco.com/0044-4537/article/view/682018
- DOI: https://doi.org/10.31857/S0044453725030069
- EDN: https://elibrary.ru/EBXTMG
- ID: 682018
Citar
Resumo
The influence of additives of some organic substances on the crystallization onset temperatures of kerosene fractions (KF) obtained from crude oil (straight-run or SRKF) and in the process of catalytic cracking of heavy oil residues (HKF) is studied by the method of thermodynamic modeling. Normal paraffins CnH2n+2 (n = 9, 11, 16) are used as additives to the KFs, and m-ethylbutylbenzene is used as an aromatic hydrocarbon. It is shown that using the UNIFAC and UNIQUAC models, one can reproduce the experimental data presented in publications and indicating that the addition of normal paraffins to HKF noticeably increases the freezing point when n is 11 and greater. For SRKF, a similar increase occurs starting from n = 16. According to the calculation results, the addition of m-ethylbutylbenzene practically does not affect the crystallization onset temperature.
Palavras-chave
Texto integral

Sobre autores
M. Mamontov
M. V. Lomonosov Moscow State University
Autor responsável pela correspondência
Email: mmn@td.chem.msu.ru
Department of Chemistry
Rússia, MoscowA. Oshchenko
The 25th State Research Institute of Chemmotology of the Ministry of Defense of Russia
Email: mmn@td.chem.msu.ru
Rússia, Moscow
Bibliografia
- Kittel H., Straka P., Šimaček P., Kadleček D. // Petroleum Science and Technology. 2022. v. 41 (5). P. 507. doi: 10.1080/10916466.2022.2061000
- Zabarnick S., Widmor N. // Energy & Fuels. 2001. V. 15. P. 1447. doi: 10.1021/ef010074b
- Coutinho J.A.P., Andersen S.I., Stenby E.H. // Fluid Ph. Eq. 1995. v. 103 p. 23. doi: 10.1016/0378-3812(94)02600-6
- Coutinho J.A.P. // Ind. Eng. Chem. Res. 1998. v. 37. p. 4870. doi: 10.1021/ie980340h
- Coutinho J.A.P., Dauphin C., Daridon J.L. // Fuel. 2000. v. 79. p. 607. doi: 10.1016/S0016-2361(99)00188-X
- Coutinho J.A.P. // Energy & Fuels. 2000. v. 14. p. 625. doi: 10.1021/ef990203c
- Улитько А.В., Волгин С.Н., Ощенко А.П., Соловьев А.В. // Тр. 25 Гос. НИИ МО РФ. 2022. Вып. 60. Т. 75–80 / Под ред. В.А. Маркина. 512 c.
- Weidlicht U., Gmehling J. // Ind. Eng. Chem. Res. 1987. v. 26. p. 1372. doi: 10.1021/ie00067a018
- Gmehling J., Li J., Schiller M. // Ind. Eng. Chem. Res. 1993. v. 32. p. 178. doi: 10.1021/ie00013a024
- G’mehling J., Lohmann J., Jakob A., et al. // Ind. Eng. Chem. Res. 1998. v. 37. p. 4876. doi: 10.1021/ie980347z
- Morgan D.L., Kobayashi R. // Fluid Ph. Eq. 1994. v. 94. p. 51. doi: 10.1016/0378-3812(94)87051-9
- Болотник Т.А. Новые подходы к определению ракетных керосинов в объектах окружающей среды и растениях методом газовой хромато-масс-спектрометрии. Дис. … к. х. н., МГУ им. М.В. Ломоносова, Химический ф-т, М., 2017. 160 с.
Arquivos suplementares
