Effect of Torsional Deformations on the Spin States of Carbon Nanotubes with Metallic Conductivity
- Authors: D’yachkov E.P.1, Lomakin N.A.1, D’yackov P.N.1
-
Affiliations:
- Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Issue: Vol 68, No 7 (2023)
- Pages: 946-951
- Section: ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ
- URL: https://rjonco.com/0044-457X/article/view/665228
- DOI: https://doi.org/10.31857/S0044457X2370023X
- EDN: https://elibrary.ru/RIRENY
- ID: 665228
Cite item
Abstract
The formation of spin levels upon torsional deformation of nonchiral (n, n) carbon nanotubes has been theoretically studied. In the absence of mechanical deformation, nanotubes have inversion symmetry and a metallic band structure with a spin-degenerate state near the Fermi level. The twisting deformation breaks the inversion symmetry, so that the tube becomes chiral. As a result, due to the Rashba effect, the degeneracy of the levels is completely lifted and spin gaps are formed between the bands of predominantly α and β types.
About the authors
E. P. D’yachkov
Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: p_dyachkov@rambler.ru
119991, Moscow, Russia
N. A. Lomakin
Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: p_dyachkov@rambler.ru
119991, Moscow, Russia
P. N. D’yackov
Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: p_dyachkov@rambler.ru
119991, Moscow, Russia
References
- Ando T. // J. Phys. Soc. Jpn. 2000. V. 69. P. 1757. https://doi.org/10.1143/JPSJ.69.1757
- Chico L., Lopez-Sancho M.P., Munoz M.C. // Phys. Rev. Lett. 2004. V. 93. P. 176402. https://doi.org/10.1103/PhysRevLett.93.176402
- Huertas-Hernando D., Guinea F., Brataas A. // Phys. Rev. B. 2006. V. 74. P. 155426. https://doi.org/10.1103/PhysRevB.74.155426
- Kuemmeth F., Ilani S., Ralph D. et al. // Nature. 2008. V. 452. P. 448. https://doi.org/10.1038/ncomms2584
- Ilani S., McEuen P.L. // Annu. Rev. Condens. Matter. Phys. 2010. V. 1. P. 1. https://doi.org/10.1146/annurev-conmatphys-070909-103928
- Jhang S.H., Marganska M., Skuorsky Y. et al. // Phys. Rev. B. 2010. V. 82. P. 041404. https://doi.org/10.1103/PhysRevB.82.041404
- Jespersen T., Grove-Rusmussen K., Paaske J. // Nature Physics. 2011. V. 7. P. 348. https://doi.org/10.1038/nphys1880
- Steele G.A., Pei F., Laird E.A. et al. // Nature Commun. 2013. V. 4. P. 1573. https://doi.org/10.1038/ncomms2584
- Wunsch B. // Phys. Rev. B. 2009. V. 79. P. 235408. https://doi.org/10.1103/PhysRevB.79.235408
- Merchant C., Markovic N. // Phys. Rev. Lett. 2008. V. 100. P. 156601. https://doi.org/10.1103/PhysRevLett.100.156601
- Wang K.Y., Blackburn A.M., Wang H.F. et al. // Appl. Phys. Lett. 2013. V. 102. P. 093508. https://doi.org/10.1063/1.4794535
- Guimaraes F.S.M., Kirwan D.F., Costa A.T. et al. // Phys. Rev. B. 2010. V. 81. P. 153408. https://doi.org/10.1103/PhysRevB.81.153408
- Flensberg K., Marcus C. // Phys. Rev. B. 2010. V. 81. P. 195418. https://doi.org/10.1103/PhysRevB.81.195418
- Gunlycke D., Jefferson J.H., Bailey S.W.D et al. // J. Phys.: Condens. Matter. 2006. V. 18. P. S843. https://doi.org/10.1088/0953-8984/18/21/S10
- Hueso L.E., Pruneda J.M., Ferrari V. // Nature. 2007. V. 445. P. 410. https://doi.org/10.1038/nature05507
- Galland C., Imamoglu A. // Phys. Rev. Lett. 2008. V. 101. P. 157404. https://doi.org/10.1103/PhysRevLett.101.157404
- Bulaev D., Trauzettel B., Loss D. // Phys. Rev. B. 2008. V. 77. P. 235301. https://doi.org/10.1103/PhysRevB.77.235301
- Laird E.A., Pei F., Kouwenhoven L.P. // Nat. Nanotechnol. 2013. V. 8. P. 565. https://doi.org/10.1038/nnano.2013.140
- Schulz A., De Martino A., Egger R. // Phys. Rev. B. 2010. V. 82. P. 033407. https://doi.org/10.1103/PhysRevB.82.033407
- Galpin M.R., Jayatilaka F.W., Logan D.E. // Phys. Rev. B. 2010. V. 81. P. 075437. https://doi.org/10.1103/PhysRevB.81.075437
- Lim J., Lopez R., Aguado R. // Phys. Rev. Lett. 2011. V. 107. P. 196801. https://doi.org/10.1103/PhysRevLett.107.196801
- Palyi A., Struck P., Rudner M. et al. // Phys. Rev. Lett. 2012. V. 108. P. 206811. https://doi.org/10.1103/PhysRevLett.108.206811
- Ohm C., Stampfer C., Splettstoesser J. et al. // Appl. Phys. Lett. 2012. V. 100. P. 143103. https://doi.org/10.1063/1.3698395
- Alam K.M., Pramanik S. // Adv. Funct. Mater. 2015. V. 25. P. 3210. https://doi.org/10.1002/adfm.201500494
- Alam K.M. Pramanik S. // Nanoscale. 2017. V. 9. P. 5155. https://doi.org/10.1039/C6NR09395G
- Rahman Md.W., Alam K.M., Pramanik S. // ACS Omega. 2018. V. 3. P. 17108. https://doi.org/10.1021/acsomega.8b02237
- Rahman Md.W., Firouzeh S., Mujica V. et al. // ACS Nano. 2020. V. 14. P. 3389. https://doi.org/10.1021/acsnano.9b09267
- Yang S.H. // Appl. Phys. Lett. 2021. V. 16. P. 120502. https://doi.org/10.1063/5.0039147
- Yang S.H., Naaman R., Paltiel Y. et al. // Nat. Rev. Phys. 2021. V. 3. P. 328. https://doi.org/10.1038/s42254-021-00302-9
- Michaeli K., Kantor-Uriel N., Naamanm R. et al. // Chem. Soc. Rev. 2016. V. 45. P. 6478. https://doi.org/10.1039/C6CS00369A
- Naaman R., Waldeck D.H. // Annu. Rev. Phys. Chem. 2015. V. 66. P. 263. https://doi.org/10.1146/annurev-physchem-040214-121554
- Joselevich E. // ChemPhysChem. 2006. V. 7. P. 1405. https://doi.org/10.1002/cphc.200600206
- D’yachkov P.N. // Russ. J. Inorg. Chem. 2021. V. 66. P. 852. https://doi.org/10.1134/S0036023621110048
- D’yachkov P.N. // Appl. Func. Mater. 2022. V. 2. P. 35. https://doi.org/10.35745/afm2022v02.02.0006
- D’yachkov P.N., Makaev D.V. // Phys. Rev. B. 2007. V. 76. P. 195411. https://doi.org/10.1103/PhysRevB.76.195411
- D’yachkov P.N., Makaev D.V. // Int. J. Quantum Chem. 2016. V. 116. P. 316. https://doi.org/10.1002/qua.25030
- D’yachkov P.N. // Quantum Chemistry of Nanotubes: Electronic Cylindrical Waves. London: Taylor and Francis, 2019. 212 p.
- Дьячков П.Н. // Углеродные нанотрубки: строение, свойства, применения. М.: БИНОМ. Лаборатория знаний, 2006. 203 с.
- Cohen-Karni T., Segev L., Srur-Lavi O. et al. // Nature Nanotechnol. 2006. V. 1. P. 36. https://doi.org/10.1038/nnano.2007.179
- Changa T. // Appl. Phys. Lett. 2007. V. 90. P. 201910. https://doi.org/10.1063/1.2739325
- Zhang D.-B., James R.D., Dumitrică T. // Phys. Rev. B. 2009. V. 80. P. 155418. https://doi.org/10.1103/PhysRevB.80.115418
- Bercioux D., Lucignano P. // Rep. Prog. Phys. 2015. V. 78. P. 106001. https://https://doi.org/10.1088/0034-4885/78/10/106001
- Koo H.C., Nitta J., Frolov S. M. et al. // Nat. Mater. 2015. V. 14. P. 871. https://doi.org/10.1038/nmat4360
- Koo H.C., Kim S.B., Kim H. et al. // Adv. Mater. 2020. V. 32. P. 2002117. https://doi.org/10.1002/adma.202002117
- Рашба E.И., Шека В.И. // Физ. тверд. тела. 1959. Т. 2. С. 162.
- D’yachkov P.N., D’yachkov E.P. // Appl. Phys. Lett. 2022. V. 120. P. 173101. https://doi.org/10.1063/5.0086902
- D’yachkov P.N. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1606. https://doi.org/10.1134/S0036023622600678
- Martin W.C. Notional Bureau of Standards A. Phys. Chem. 1971. V. 7SA.
Supplementary files
