Effect of Supersonic Nitrogen Flow on Ceramic Material Ta4HfC5–SiC

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The behavior of the ceramic material Ta4HfC5-30 vol % SiC has been studied under the effect of supersonic flow of dissociated nitrogen, which is necessary to assess the potential application of these materials in oxygen-free gas environments at temperatures >1800°C. It has been found that as a result of heating the surface to ~2020°C in a few minutes there is a decrease to ~1915°C followed by a slow decrease to 188°C. This is probably due to the chemical processes occurring on the surface and the formation of an extremely rough microstructure. The ablation rate has been determined; it has been shown that neither at introduction of the sample into a high enthalpy nitrogen flow nor at sharp cooling (temperature drop to ~880°C in 9–10 s) cracking of the sample or detachment of the near-surface region has been observed. X-ray powder diffraction and Raman spectroscopy data allow us to conclude the complete removal of silicon carbide from the surface layer and the transformation of complex tantalum-hafnium carbide into the nitride.

About the authors

E. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
Russian Federation, 119991, Moscow, Russia

N. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
Russian Federation, 119991, Moscow, Russia

A. F. Kolesnikov

Ishlinskii Institute of Problems of Mechanics, Russian Academy of Sciences

Email: ep_simonenko@mail.ru
Russian Federation, 119526, Moscow, Russia

A. V. Chaplygin

Ishlinskii Institute of Problems of Mechanics, Russian Academy of Sciences

Email: ep_simonenko@mail.ru
119526, Moscow, Russia

E. K. Papynov

Far Eastern Federal University

Email: ep_simonenko@mail.ru
690922, Vladivostok, Russia

O. O. Shichalin

Far Eastern Federal University

Email: ep_simonenko@mail.ru
690922, Vladivostok, Russia

A. A. Belov

Far Eastern Federal University

Email: ep_simonenko@mail.ru
690922, Vladivostok, Russia

I. A. Nagornov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: ep_simonenko@mail.ru
119526, Moscow, Russia

A. S. Mokrushin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: ep_simonenko@mail.ru
119991, Moscow, Russia

N. T. Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: egorova.offver@gmail.com
119991, Moscow, Russia

References

  1. He R., Fang L., Han T. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 13. P. 5220. https://doi.org/10.1016/j.jeurceramsoc.2022.06.039
  2. Calzolari A., Oses C., Toher C. et al. // Nat. Commun. 2022. V. 13. № 1. P. 5993. https://doi.org/10.1038/s41467-022-33497-1
  3. Esmaeili M.M., Mahmoodi M., Mokhtarzade A. et al. // J. Mater. Eng. Perform. 2022. V. 31. № 9. P. 7719. https://doi.org/10.1007/s11665-022-06766-9
  4. Kelly J.P., Vakharia V.S., Novitskaya E. et al. // Adv. Eng. Mater. 2022. V. 24. № 8. P. 2200026. https://doi.org/10.1002/adem.202200026
  5. Geng X., Xu W., Huang X. et al. // J. Am. Ceram. Soc. 2022. V. 105. № 7. P. 4942. https://doi.org/10.1111/jace.18416
  6. Savvatimskiy A.I., Onufriev S.V., Valyano G.V. et al. // Ceram. Int. 2022. V. 48. № 14. P. 19655. https://doi.org/10.1016/j.ceramint.2022.03.102
  7. Shcherbakov V.A., Gryadunov A.N., Semenchuk I.E. et al. // Int. J. Self-Propagating High-Temperature Synth. 2022. V. 31. № 2. P. 57. https://doi.org/10.3103/S1061386222020091
  8. Jin X., Hou C., Zhao Y. et al. // Ceram. Int. 2022. V. 48. № 23. P. 35445. https://doi.org/10.1016/j.ceramint.2022.08.147
  9. Wang P., Xu Z., Qin B. et al. // Vacuum. 2022. V. 205. P. 111464. https://doi.org/10.1016/j.vacuum.2022.111464
  10. Cheng Z., Lu W., Chen L. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 13. P. 5280. https://doi.org/10.1016/j.jeurceramsoc.2022.05.068
  11. Zhao S. // J. Eur. Ceram. Soc. 2022. V. 42. № 13. P. 5290. https://doi.org/10.1016/j.jeurceramsoc.2022.05.046
  12. Li Z., Chen L., Chang F. et al. // Ceram. Int. 2022. V. 48. № 20. P. 30826. https://doi.org/10.1016/j.ceramint.2022.07.036
  13. Xia M., Lu N., Chen Y. et al. // Int. J. Refract. Met. Hard Mater. 2022. V. 107. P. 105859. https://doi.org/10.1016/j.ijrmhm.2022.105859
  14. Mao H.-R., Dong E.-T., Jin S.-B. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 10. P. 4053. https://doi.org/10.1016/j.jeurceramsoc.2022.03.054
  15. Schwind E.C., Reece M.J., Castle E. et al. // J. Am. Ceram. Soc. 2022. V. 105. № 6. P. 4426. https://doi.org/10.1111/jace.18400
  16. Guo W., Hu J., Ye Y. et al. // Ceram. Int. 2022. V. 48. № 9. P. 12790. https://doi.org/10.1016/j.ceramint.2022.01.149
  17. Wolfe D.E., Albert P.E., Ryan C.J. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 2. P. 327. https://doi.org/10.1016/j.jeurceramsoc.2021.10.014
  18. Zou X., Ni D., Chen B. et al. // J. Am. Ceram. Soc. 2021. V. 104. № 12. P. 6601. https://doi.org/10.1111/jace.18007
  19. Zhang Y., Li S., Li N. et al. // J. Alloys Compd. 2021. V. 884. P. 161040. https://doi.org/10.1016/j.jallcom.2021.161040
  20. Simonenko E.P., Ignatov N.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 11. P. 1681. https://doi.org/10.1134/S0036023611110258
  21. Simonenko E.P., Simonenko N.P., Petrichko M.I. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 11. P. 1317. https://doi.org/10.1134/S0036023619110196
  22. Simonenko E.P., Simonenko N.P., Lysenkov A.S. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 3. P. 446. https://doi.org/10.1134/S0036023620030146
  23. Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // J. Eur. Ceram. Soc. 2021. V. 41. № 2. P. 1088. https://doi.org/10.1016/j.jeurceramsoc.2020.10.001
  24. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 12. P. 1887. https://doi.org/10.1134/S0036023621120172
  25. Agte C., Alterthum H. // Z. Techn. Phys. 1930. V. 6. P. 182.
  26. Andrievskii R.A., Strel’nikova N.S., Poltoratskii N.I. et al. // Powder Met. Ceram. 1967. V. 6. № 1. P. 65. https://doi.org/10.1007/BF00773385
  27. Cedillos-Barraza O., Manara D., Boboridis K. et al. // Sci. Rep. 2016. V. 6. № 1. P. 37962. https://doi.org/10.1038/srep37962
  28. Savvatimskiy A.I., Onufriev S.V., Muboyadzhyan S.A. // J. Eur. Ceram. Soc. 2019. V. 39. № 4. P. 907. https://doi.org/10.1016/j.jeurceramsoc.2018.11.030
  29. Pierson H.O. // Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications, Park Ridge: Noyes Publications, 1996.
  30. Самсонов Г.В. // Тугоплавкие соединения. Справочник по свойствам и применению. M.: Металлургиздат, 1963.
  31. Shapkin N.P., Papynov E.K., Shichalin O.O. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 5. P. 629. https://doi.org/10.1134/S0036023621050168
  32. Sun J., Zhao J., Chen Y. et al. // Composites, Part B: Eng. 2022. V. 231. P. 109586. https://doi.org/10.1016/j.compositesb.2021.109586
  33. Simonenko E.P., Simonenko N.P., Papynov E.K. et al. // Ceraics. Int. 2023. V. 49. № 6. P. 9691–9701. https://doi.org/10.1016/j.ceramint.2022.11.140
  34. Zhang B., Yin J., Chen J. et al. // J. Eur. Ceram. Soc. 2018. V. 38. № 4. P. 1227. https://doi.org/10.1016/j.jeurceramsoc.2017.10.025
  35. Zhang B., Yin J., Huang Y. et al. // J. Eur. Ceram. Soc. 2018. V. 38. № 16. P. 5610. https://doi.org/10.1016/j.jeurceramsoc.2018.08.021
  36. Zhang H., Akhtar F. // Ceramics. 2020. V. 3. № 3. P. 359. https://doi.org/10.3390/ceramics3030032
  37. Vinci A., Zoli L., Sciti D. et al. // J. Eur. Ceram. Soc. 2019. V. 39. № 4. P. 780. https://doi.org/10.1016/j.jeurceramsoc.2018.11.017
  38. Zhang C., Zhang Y., Cao K. et al. // Ceram. Int. 2021. V. 47. № 5. P. 6463. https://doi.org/10.1016/j.ceramint.2019.09.229
  39. Rana D., Balani K. // Int. J. Refract. Met. Hard Mater. 2023. V. 110. P. 106024. https://doi.org/10.1016/j.ijrmhm.2022.106024
  40. Xu J., Zhao F., He S. et al. // J. Am. Ceram. Soc. 2022. V. 105. № 6. P. 3838. https://doi.org/10.1111/jace.18380
  41. Sharma S.K., Chaudhary K., Gupta Y. et al. // Int. J. Appl. Ceram. Technol. 2022. V. 19. № 3. P. 1691. https://doi.org/10.1111/ijac.13993
  42. Liu C., Wang A., Tian T. et al. // J. Eur. Ceram. Soc. 2021. V. 41. № 15. P. 7469. https://doi.org/10.1016/j.jeurceramsoc.2021.07.047
  43. Gordeev A.N., Kolesnikov A.F., Sakharov V.I. // Fluid Dyn. 2017. V. 52. № 6. P. 786. https://doi.org/10.1134/S0015462817060076
  44. Carandente V., Savino R., Esposito A. et al. // Exp. Therm. Fluid Sci. 2013. V. 48. P. 97. https://doi.org/10.1016/j.expthermflusci.2013.02.012
  45. Kolesnikov A.F., Lukomskii I.V., Sakharov V.I. et al. // Fluid Dyn. 2021. V. 56. № 6. P. 897. https://doi.org/10.1134/S0015462821060070
  46. Kolesnikov A.F., Kuznetsov N.T., Murav’eva T.I. et al. // Fluid Dyn. 2022. V. 57. № 4. P. 513. https://doi.org/10.1134/S0015462822040061
  47. Lukomskii I.V., Chaplygin A.V., Kolesnikov A.F. // A device for measuring the heat flux to the surface of a material heated in a jet of high-enthalpy gas to a high temperature, Patent RU 205572, 2021.
  48. Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // Materials (Basel). 2022. V. 15. № 23. P. 8507. https://doi.org/10.3390/ma15238507
  49. Feng L., Kim J.-M., Lee S.-H. et al. // J. Am. Ceram. Soc. 2016. V. 99. № 4. P. 1129. https://doi.org/10.1111/jace.14144
  50. Jiang J., Wang S., Li W. // J. Am. Ceram. Soc. 2016. V. 99. № 10. P. 3198. https://doi.org/10.1111/jace.14436
  51. Burdick C.L., Owen E.A. // J. Am. Chem. Soc. 1918. V. 40. № 12. P. 1749. https://doi.org/10.1021/ja02245a001
  52. Wyckoff R.W.G. // Cryst. Struct. 1963. V. 1. P. 85.
  53. Rudy E. // Metall. Mater. Trans. B. 1970. V. 1. № 5. P. 1249. https://doi.org/10.1007/BF02900238
  54. Zerr A., Miehe G., Riedel R. // Nat. Mater. 2003. V. 2. № 3. P. 185. https://doi.org/10.1038/nmat836
  55. Gatterer J., Dufek G., Ettmayer P. et al. // Monatsh. Chem. – Chem. Mon. 1975. V. 106. № 5. P. 1137. https://doi.org/10.1007/BF00906226
  56. Aleshina L.A., Loginova S.V. // Crystallogr. Reports. 2002. V. 47. № 3. P. 415. https://doi.org/10.1134/1.1481927
  57. Whittle K.R., Lumpkin G.R., Ashbrook S.E. // J. Solid State Chem. 2006. V. 179. № 2. P. 512. https://doi.org/10.1016/j.jssc.2005.11.011
  58. Ohtaka O., Yamanaka T., Kume S. // J. Ceram. Soc. Japan. 1991. V. 99. № 1153. P. 826. https://doi.org/10.2109/jcersj.99.826
  59. Wipf H., Klein M.V., Williams W.S. // Phys. Status Solid. 1981. V. 108. № 2. P. 489. https://doi.org/10.1002/pssb.2221080225
  60. Tallo I., Thomberg T., Kurig H. et al. // Carbon. 2014. V. 67. P. 607. https://doi.org/10.1016/j.carbon.2013.10.034
  61. Stoehr M., Shin C.-S., Petrov I. et al. // J. Appl. Phys. 2007. V. 101. № 12. P. 123509. https://doi.org/10.1063/1.2748354
  62. Valleti K. // J. Vac. Sci. Technol., A: Vacuum. Surfaces. Film. 2009. V. 27. № 4. P. 626. https://doi.org/10.1116/1.3136858
  63. Wu R., Zhou B., Li Q. et al. // J. Phys. D. Appl. Phys. 2012. V. 45. № 12. P. 125304. https://doi.org/10.1088/0022-3727/45/12/125304
  64. Devan R.S., Ho W.-D., Wu S.Y. et al. // J. Appl. Crystallogr. 2010. V. 43. № 3. P. 498. https://doi.org/10.1107/S002188981000796X

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (172KB)
3.

Download (915KB)
4.

Download (109KB)
5.

Download (77KB)
6.

Download (3MB)

Copyright (c) 2023 Е.П. Симоненко, Н.П. Симоненко, А.Ф. Колесников, А.В. Чаплыгин, Е.К. Папынов, О.О. Шичалин, А.А. Белов, И.А. Нагорнов, А.С. Мокрушин, Н.Т. Кузнецов