Copper(II) Catecholate Complexes with Polypyridyl Ligands

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Copper(II) catecholate complexes based on 3,6-di-tert-butyl-o-benzoquinone with N-donor ligands of the phenanthroline series have been synthesized: (3,6-Cat)Cu(Phen) (I), (3,6-Cat)Cu(DPQ) (II), and (3,6-Cat)Cu(DPPZ) (III), where 3,6-Cat is the 3,6-di-tert-butyl-o-benzoquinone dianion, Phen is phenanthroline, DPQ is dipyrido[3,2-d:2',3'-f]quinoxaline, and DPPZ is dipyrido[3,2-a:2',3'-c]phenazine. The synthesized copper(II) complexes demonstrate intramolecular ligand-to-ligand charge transfer responsible for their intense violet color. The electronic structure of the synthesized chromophores was studied by electronic spectroscopy, cyclic voltammetry, and quantum-chemical calculations. The molecular and crystal structures of the synthesized compounds were determined by X-ray diffraction analysis (CIF files CCDC 2 250 975 (I⋅THF), 2 250 976 ([(II⋅THF)(II)]⋅3THF), 2250977 (II)).

About the authors

O. Yu. Trofimova

Rasuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: olesya@iomc.ras.ru
603950, Nizhny Novgorod, Russia

K. I. Pashanova

Rasuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: olesya@iomc.ras.ru
603950, Nizhny Novgorod, Russia

I. V. Ershova

Rasuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: olesya@iomc.ras.ru
603950, Nizhny Novgorod, Russia

M. V. Arseniev

Rasuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: olesya@iomc.ras.ru
603950, Nizhny Novgorod, Russia

I. A. Yakushev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: olesya@iomc.ras.ru
119991, Moscow, Russia

P. V. Dorovatovsky

National Research Center “Kurchatov Institute”

Email: olesya@iomc.ras.ru
123182, Moscow, Russia

R. R. Aisin

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: olesya@iomc.ras.ru
119334, Moscow, Russia

A. V. Piskunov

Rasuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: olesya@iomc.ras.ru
603950, Nizhny Novgorod, Russia

References

  1. Sobottka S., Nößler M., Ostericher A.L. et al. // Chem. Eur. J. 2020. V. 26. P. 1314. https://doi.org/10.1002/chem.201903700
  2. Romashev N.F., Abramov P.A., Bakaev I.V. et al. // Inorg. Chem. 2022. V. 61. P. 2105. https://doi.org/10.1021/acs.inorgchem.1c03314
  3. Shultz D.A., Stephenson R., Kirk M.L. // Dalton Trans. 2023. V. 52. P. 1970. https://doi.org/10.1039/D2DT03385B
  4. Yang J., Kersi D.K., Giles L.J. et al. // Inorg. Chem. 2014. V. 53. P. 4791. https://doi.org/10.1021/ic500217y
  5. Kramer W.W., Cameron L.A., Zarkesh R.A. et al. // Inorg. Chem. 2014. V. 53. P. 8825. https://doi.org/10.1021/ic5017214
  6. Shavaleev N.M., Davies E.S., Adams H. et al. // Inorg. Chem. 2008. V. 47. P. 1532. https://doi.org/10.1021/ic701821d
  7. Benedix R., Hennig H., Kunkely H. et al. // Chem. Phys. Lett. 1990. V. 175. P. 483. https://doi.org/10.1016/0009-2614(90)85568-W
  8. Cameron L.A., Ziller J.W., Heyduk A.F. // Chem. Sci. 2016. V. 7. P. 1807. https://doi.org/10.1039/C5SC02703A
  9. Ghosh P., Begum A., Herebian D. et al. // Angew. Chem. Int. Ed. 2003. V. 42. P. 563. https://doi.org/10.1002/anie.200390162
  10. Best J., Sazanovich I.V., Adams H. et al. // Inorg. Chem. 2010. V. 49. P. 10041. https://doi.org/10.1021/ic101344t
  11. Scattergood P.A., Jesus P., Adams H. et al. // Dalton Trans. 2015. V. 44. P. 11705. https://doi.org/10.1039/C4DT03466J
  12. Yang J., Kersi D.K., Richers C.P. et al. // Inorg. Chem. 2018. V. 57. P. 13470. https://doi.org/10.1021/acs.inorgchem.8b02087
  13. Kirk M.L., Shultz D.A., Marri A.R. et al. // J. Am. Chem. Soc. 2022. V. 144. P. 21005. https://doi.org/10.1021/jacs.2c09680
  14. Kirk M.L., Shultz D.A., Hewitt P. et al. // Chem. Sci. 2021. V. 12. P. 13704. https://doi.org/10.1039/D1SC02965G
  15. Kirk M.L., Shultz D.A., Chen J. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 10519. https://doi.org/10.1021/jacs.1c04149
  16. Hagberg D.P., Yum J.-H., Lee H. et al. // J. Am. Chem. Soc. 2008. V. 130. P. 6259. https://doi.org/10.1021/ja800066y
  17. García-Cañadas J., Meacham A.P., Peter L.M. et al. // Angew. Chem. Int. Ed. 2003. V. 42. P. 3011. https://doi.org/10.1002/anie.200351338
  18. Ward M.D. // J. Solid State Electrochem. 2005. V. 9. P. 778. https://doi.org/10.1007/s10008-005-0668-4
  19. Sekar N., Gehlot V.Y. // Resonance. 2010. V. 15. P. 819. https://doi.org/10.1007/s12045-010-0091-8
  20. Atallah H., Taliaferro C.M., Wells K.A. et al. // Dalton Trans. 2020. V. 49. P. 11565. https://doi.org/10.1039/D0DT01765E
  21. Ершова И.В., Малеева А.В., Айсин Р.Р. и др. // Изв. Академии наук. Сер. хим. 2023. Т. 72. С. 193.
  22. Maleeva A.V., Ershova I.V., Trofimova O.Y. et al. // Mendeleev Commun. 2022. V. 32. P. 83. https://doi.org/10.1016/j.mencom.2022.01.027
  23. Малеева А.В., Трофимова О.Ю., Якушев И.А. и др. // Коорд. химия. 2023. Т. 49 (в печати).
  24. Pashanova K.I., Bitkina V.O., Yakushev I.A. et al. // Molecules. 2021. V. 26. P. 4622. https://doi.org/10.3390/molecules26154622
  25. Pashanova K.I., Ershova I.V., Trofimova O.Y. et al. // Molecules. 2022. V. 27. P. 8175. https://doi.org/10.3390/molecules27238175
  26. Rall J., Wanner M., Albrecht M. et al. // Chem. Eur. J. 1999. V. 5. P. 2802. https://doi.org/10.1002/(SICI)1521-3765(19991001)5:10<2802::AID-CHEM2802>3.0.CO;2-5
  27. Abakumov G.A., Krashilina A.V., Cherkasov V.K. et al. // Russ. Chem. Bull. 2001. V. 50. P. 2193. https://doi.org/10.1023/A:1015022006445
  28. Kaizer J., Zsigmond Z., Ganszky I. et al. // Inorg. Chem. 2007. V. 46. P. 4660. https://doi.org/10.1021/ic062309a
  29. Ovcharenko V.I., Gorelik E.V., Fokin S.V. et al. // J. Am. Chem. Soc. 2007. V. 129. P. 10512. https://doi.org/10.1021/ja072463b
  30. Fursova E.Yu., Ovcharenko V.I., Gorelik E.V. et al. // Russ. Chem. Bull. 2009. V. 58. P. 1139. https://doi.org/10.1007/s11172-009-0148-6
  31. Davidson R.A., Hao J., Rheingold A.L. et al. // Polyhedron. 2017. V. 133. P. 348. https://doi.org/10.1016/j.poly.2017.05.038
  32. Cherkasova A.V., Kozhanov K.A., Zolotukhin A.A. et al. // Russ. J. Coord. Chem. 2019. V. 45. P. 489. https://doi.org/10.1134/S1070328419070029
  33. Kuropatov V.A., Cherkasova A.V., Martyanov K.A. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. P. 3292. https://doi.org/10.1002/ejic.202100517
  34. Buchanan R.M., Wilson-Blumenberg C., Trapp C. et al. // Inorg. Chem. 1986. V. 25. P. 3070. https://doi.org/10.1021/ic00237a029
  35. Verma P., Weir J., Mirica L. et al. // Inorg. Chem. 2011. V. 50. P. 9816. https://doi.org/10.1021/ic200958g
  36. Lakk-Bogáth D., Csonka R., Lorencz N. et al. // Polyhedron. 2015. V. 102. P. 185. https://doi.org/10.1016/j.poly.2015.09.026
  37. van der Tol E.B., van Ramesdonk H.J., Verhoeven J.W. et al. // Chem. Eur. J. 1998. V. 4. P. 2315. https://doi.org/10.1002/(SICI)1521-3765(19981102)4: 11<2315::AID-CHEM2315>3.0.CO;2-E
  38. Abakumov G.A., Cherkasov V.K., Bubnov M.P. et al. // Russ. Chem. Bull. 1992. V. 41. P. 1813. https://doi.org/10.1007/BF00863815
  39. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. P. 1900184. https://doi.org/10.1002/crat.201900184
  40. Kabsch W. // Acta Crystallogr., Sect. D. 2010. V. 66. P. 125. https://doi.org/10.1107/S0907444909047337
  41. Bruker. APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. 2016.
  42. Sheldrick G.M. // Acta Crystallogr. 2015. V. A71. P. 3. https://doi.org/10.1107/S2053273314026370
  43. Sheldrick G.M. // Acta Crystallogr. 2015. V. C71. P. 3. https://doi.org/10.1107/S2053229614024218
  44. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  45. Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Revision D.01. Gaussian, Inc. Wallingford CT. 2013.
  46. Hathaway B.J., Billing D.E. // Coord. Chem. Rev. 1970. V. 5. P. 143. https://doi.org/10.1016/S0010-8545(00)80135-6
  47. Piskunov A.V., Maleeva A.V., Mescheryakova I.N. et al. // Eur. J. Inorg. Chem. 2012. P. 4318. https://doi.org/10.1002/ejic.201200535
  48. Chegerev M.G., Piskunov A.V., Maleeva A.V. et al. // Eur. J. Inorg. Chem. 2016. P. 3813. https://doi.org/10.1002/ejic.201600501
  49. Davidson R.A., Hao J., Rheingold A.L. et al. // Polyhedron. 2017. V. 136. P. 176. https://doi.org/10.1016/j.poly.2017.10.003
  50. Batsanov S.S. // Russ. J. Inorg. Chem. 1991. V. 36. P. 1694.
  51. Zairov R.R., Yagodin A.V., Khrizanforov M. et al. // J. Nanopart. Res. 2019. V. 21. P. 12.
  52. Райхардт К. Растворители и эффекты среды в органической химии. М.: Мир, 1991. 764 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (141KB)
3.

Download (147KB)
4.

Download (129KB)
5.

Download (547KB)
6.

Download (490KB)
7.

Download (92KB)
8.

Download (71KB)
9.

Download (112KB)
10.

Download (842KB)
11.

Download (1MB)

Copyright (c) 2023 О.Ю. Трофимова, К.И. Пашанова, И.В. Ершова, М.В. Арсеньев, И.А. Якушев, П.В. Дороватовский, Р.Р. Айсин, А.В. Пискунов