Substituted Phthalimides Linked to the Cymantrenyl Moiety: Molecules with Tunable Optical and Electrochemical Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of investigation of the optical and electrochemical properties of substituted phthalimides linked to a cymantrenyl moiety by IR and NMR spectroscopy, UV-Vis spectroscopy, and cyclic voltammetry and also by DFT calculations are presented. It was shown that the optical, donor-acceptor, and redox properties of the organometallic phthalimides are affected by substituents in position 1 of the side chain of the cymantrene Cp and in position 4 of the phthalimide benzene ring. The reactions of dicarbonyl chelates with external ligands in the dark attest to hemilability of the Mn–O=C(imide) bond.

About the authors

E. S. Kelbysheva

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: kellena80@mail.ru
119334, Moscow, Russia

T. V. Strelkova

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: kellena80@mail.ru
119334, Moscow, Russia

M. G. Ezernitskaya

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: kellena80@mail.ru
119334, Moscow, Russia

V. G. Alekseev

Faculty of Chemistry and Technology, Tver State University

Email: kellena80@mail.ru
170100, Tver, Russia

L. N. Telegina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Author for correspondence.
Email: kellena80@mail.ru
119334, Moscow, Russia

References

  1. Jun-ichi Nishida, Yoshiki Morikawa, Akito Hashimoto et al. // Mater. Adv. 2021. V. 2. P. 7861. https://doi.org/10.1039/d1ma00716e
  2. Biao Chen, Xuepeng Zhang, Yucai Wang et al. // Chem. Asian J. 2019. V. 14. P. 751. https://doi.org/10.1002/asia.201801002
  3. Georgiev A., Yordanov D., Dimov D. et al. // J. Photochem. Photobiol. A. 2020. V. 393. P. 112443. https://doi.org/10.1016/j.jphotochem.2020.112443
  4. Venkatramaiah N., Dinesh Kumar G., Chandrasekaran Y. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 3838. https://doi.org/10.1021/acsami.7b11025
  5. Xiaodong He, Lunxiang Yin, Yanqin Li // New J. Chem. 2019. V. 43. P. 6577. https://doi.org/10.1039/C9NJ00600A
  6. Fanyong Yan, Chunhui Yi, Zhonghua Hao et al. // Colloids Surf., A. 2022. V. 650. P. 129626. https://doi.org/10.1016/j.colsurfa.2022.129626
  7. Zawadzka M., Nitschke P., Musioł M. et al. // Molecules. 2023. V. 28. № 4. P. 1740. https://doi.org/10.3390/molecules28041740
  8. Çakal D., Ertan S., Cihaner A. et al. // Dyes Pigm. 2019. V. 161. P. 411. https://doi.org/10.1016/j.dyepig.2018.10.002
  9. Wei Lv, Huijiao Liu, Wen Wang et al. // RSC Adv. 2017. V. 7. P. 18384. https://doi.org/10.1039/C6RA28757C
  10. Zhijun Li, Yong Jin Jeong, JisuHong et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 7073. https://doi.org/10.1021/acsami.1c20278
  11. Dierschke F., Jacob J., Mullen K. // Synth. Met. 2006. V. 156. P. 433. https://doi.org/10.1016/j.synthmet.2005.11.016
  12. Quanyou Feng, Xiaojun Zheng, Hongjian Wang et al. // Mater. Adv. 2021. V. 2. P. 4000. https://doi.org/10.1039/d1ma00181g
  13. Orita R., Franckevicius M., Vysniauskas A. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 16033. https://doi.org/10.1039/c8cp01999a
  14. Taku Shoji, Nanami Iida, Akari Yamazaki et al. // Org. Biomol. Chem. 2020. V. 18. P. 2274. https://doi.org/10.1039/d0ob00164c
  15. Yizhen Zhan, Xue Zhao, Wei Wang et al. // Dyes Pigm. 2017. V. 146. P. 240. https://doi.org/10.1016/j.dyepig.2017.07.013
  16. Singha D., Sahu D.K., Sahu K. et al. // J. Phys. Chem. B. 2018. V. 122. P. 6966. https://doi.org/10.1021/acs.jpcb.8b03901
  17. Tan A., Bozkurt E., Kara Y. et al. // J. Fluoresc. 2017. V. 27. P. 981. https://doi.org/10.1007/s10895-017-2033-2
  18. Majhi D., Das S.K., Sahu P.K. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 18349. https://doi.org/10.1039/c4cp01912a
  19. Yuanyuan Qin, Guoping Li, Ting Qi et al. // Mater. Chem. Front. 2020. V. 4. P. 1554. https://doi.org/10.1039/D0QM00084A
  20. Kelbysheva E.S., Strelkova T.V., Ezernitskaya M.G. et al. // Chem. Select. 2023. V. 8. P. e202204162. https://doi.org/10.1002/slct.202204162
  21. Kelbysheva E.S., Telegina L.N., Ershova E.A. et al. // Russ. Chem. Bull. 2017. V. 66. № 2. P. 327. https://doi.org/10.1007/s11172-017-1735-6
  22. Yang P.F., Yang G.K. // J. Am. Chem. Soc. 1992. V. 114. P. 6937. https://doi.org/10.1021/ja00043a061
  23. Kelbysheva E.S., Strelkova T.V., Ezernitskaya M.G. et al. // Chem. Select. 2021. V. 6. P. 9861. https://doi.org/10.1002/slct.202102464
  24. Kelbysheva E.S., Telegina L.N., Abramova O.V. et al. // Russ. Chem. Bull. 2015. V. 11. P. 2646. https://doi.org/10.1007/s11172-015-1203-0
  25. Zhang C., Niu Z., Ding Y. et al. // Chem. 2018. V. 4. P. 2814. https://doi.org/10.1016/j.chempr.2018.08.024
  26. Hendsbee A.D., McAfee S.M., Sun J.-P. et al. // J. Mater. Chem. C. 2015. V. 3. P. 8904. https://doi.org/10.1039/c5tc01877c
  27. Wu K., Pudasaini B., Park J.Y. et al. // Organometallics. 2020. V. 3. P. 679. https://doi.org/10.1021/acs.organomet.9b00822
  28. Kostyuchenko A.S., Kurowska A., Zassowski P. et al. // J. Org. Chem. 2019. V. 84. P. 10040. https://doi.org/10.1021/acs.joc.9b01216

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (46KB)
3.

Download (83KB)
4.

Download (67KB)
5.

Download (100KB)
6.

Download (55KB)
7.

Download (77KB)
8.

Download (91KB)
9.

Download (82KB)
10.

Download (183KB)

Copyright (c) 2023 Е.С. Келбышева, Т.В. Стрелкова, М.Г. Езерницкая, В.Г. Алексеев, Л.Н. Телегина