Dispersed Metal Alloys: Synthesis Methods and Catalytic Properties (Review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review is devoted to dispersed powdery porous (including deposited) double and ternary metal alloys. Various approaches to the synthesis of these alloys, as well as modern areas of their practical application are considered. An analysis of the relevance of the study of highly dispersed alloys and the feasibility of developing new methods for their production is presented.

Full Text

Restricted Access

About the authors

Yu. V. Rudneva

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: rudneva@niic.nsc.ru
Russian Federation, Novosibirsk

S. V. Korenev

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: rudneva@niic.nsc.ru
Russian Federation, Novosibirsk

References

  1. Singh A.K., Xu Q. // ChemCatChem. 2013. V. 5. № 3. P. 652. https://doi.org/10.1002/cctc.201200591
  2. Rudneva Yu.V., Shubin Y.V., Plyusnin P.E. et al. // 20th Annu. Conf. YUCOMAT-2018. Herceg Novi, Montenegro, Sept. 3–7, 2018. P. 95.
  3. Lagunova V., Rubilkin P., Filatov E. et al. // New J. Chem. 2024. V. 48. № 4. P. 1578. https://doi.org/10.1039/D3NJ05311C
  4. Filatov E.Y., Borodin A.O., Kuratieva N.V. et al. // New J. Chem. 2022. V. 46. № 39. P. 19009. https://doi.org/10.1039/D2NJ03402F
  5. Vedyagin A.A., Plyusnin P.E., Kenzhin R.M. et al. // Mater. Sci. Forum. 2020. V. 998. P. 151. https://doi.org/10.4028/www.scientific.net/MSF.998.151
  6. Vedyagin A.A., Shubin Y.V., Kenzhin R.M. et al. // ToP. Catal. 2019. V. 62. № 1–4. P. 305. https://doi.org/10.1007/s11244-018-1093-0
  7. Shubin Y., Plyusnin P., Sharafutdinov M. et al. // Nanotechnology. 2017. V. 28. № 20. P. 205302. https://doi.org/10.1088/1361-6528/aa6bc9
  8. Volodin V.N., Tuleushev Y.Z., Zhakanbaev E.A. et al. // Phys. Met. Metallogr. 2023. V. 124. № 5. P. 479. https://doi.org/10.1134/S0031918X23600422
  9. Sarakinos K., Greczynski G., Elofsson V. et al. // J. Appl. Phys. 2016. V. 119. № 9. https://doi.org/10.1063/1.4942840
  10. Воронков М.Г., Татарова Л.А., Трофимова и др. // Химия в интересах устойчивого развития. 2001. Т. 9. С. 393.
  11. Конорев О.А., Занавескин Л.Н., Сурис А.Л., Ускач Я.Л. // Экология и промышленность России. 2003. Т. 1. С. 8.
  12. Nilekar A.U., Alayoglu S., Eichhorn B. et al. // J. Am. Chem. Soc. 2010. V. 132. № 21. P. 7418. https://doi.org/10.1021/ja101108w
  13. Kondoh H., Toyoshima R., Monya Y. et al. // Catal. Today. 2016. V. 260. P. 14. https://doi.org/10.1016/j.cattod.2015.05.016
  14. Zhao X., Liu Q., Li Q. et al. // Chem. Eng. J. 2020. V. 400. P. 125744. https://doi.org/10.1016/j.cej.2020.125744
  15. Gadenin M.M. // Inorg. Mater. 2023. V. 59. № 15. P. 1565. https://doi.org/10.1134/S0020168523150049
  16. Ievlev V.M., Pavlov I.S., Solntsev K.A. et al. // Inorg. Mater. 2023. V. 59. № 12. P. 1295. https://doi.org/10.1134/S002016852312004X
  17. Bogatov Y.V., Shcherbakov A.V., Shcherbakov V.A. et al. // Inorg. Mater. 2023. V. 59. № 10. P. 1148. https://doi.org/10.1134/S0020168523100011
  18. Volkov A.Y., Podgorbunskaya P.O., Novikova O.S. et al. // Inorg. Mater. 2023. V. 59. № 6. P. 563. https://doi.org/10.1134/S0020168523060171
  19. Bagiyeva G.Z., Abdinova G.J., Aliyeva T.J. et al. // Inorg. Mater. 2023. V. 59. № 12. P. 1289. https://doi.org/10.1134/S0020168523120014
  20. Эллерт О.Г., Цодиков М.В., Николаев С.А., Новоторцев В.М. // Успехи химии. 2014. Т. 83. № 8. С. 718. https://doi.org/10.1070/RC2014v083n08ABEH004432
  21. Toshima N., Yonezawa T. // New J. Chem. 1998. V. 22. № 11. P. 1179. https://doi.org/10.1039/a805753b
  22. Ponec V. // Appl. Catal., A: Gen. 2001. V. 222. № 1–2. P. 31. https://doi.org/10.1016/S0926-860X(01)00828-6
  23. Huynh K.H., Pham X.H., Kim J. et al. // Int. J. Mol. Sci. 2020. V. 21. № 14. P. 1. https://doi.org/10.3390/ijms21145174
  24. Basavegowda N., Mishra K., Lee Y.R. // J. Alloys Compd. 2017. V. 701. P. 456. https://doi.org/10.1016/j.jallcom.2017.01.122
  25. Bhunia K., Khilari S., Pradhan D. // Dalton Trans. 2017. V. 46. № 44. P. 15558. https://doi.org/10.1039/C7DT02608K
  26. Gholivand M.-B., Jalalvand A.R., Goicoechea H.C. et al. // Talanta. 2015. V. 131. P. 249. https://doi.org/10.1016/j.talanta.2014.07.040
  27. Birdi K.S. Handbook of Surface and Colloid Chemistry. N.Y.: CRC Press, 2003. 756 p.
  28. Сумм Б.Д. Основы коллоидной химии. М.: Академия, 2006. 240 c.
  29. Rudneva Y.V., Shubin Y.V., Plyusnin P.E. et al. // J. Alloys Compd. 2019. V. 782. P. 716. https://doi.org/10.1016/j.jallcom.2018.12.207
  30. Chen A., Holt-Hindle P. // Chem. ReV. 2010. V. 110. № 6. P. 3767. https://doi.org/10.1021/cr9003902
  31. Zaleska-Medynska A., Marchelek M., Diak M. et al. // Adv. Colloid Interface Sci. 2016. V. 229. P. 80. https://doi.org/10.1016/j.cis.2015.12.008
  32. Jibowu T. // Front. Nanosci. Nanotechnol. 2016. V. 2. № 4. P. 165. https://doi.org/10.15761/FNN.1000129
  33. Гропянов А.В., Ситов Н.Н., Жукова М.Н. Порошковые материалы. М.: ВШТЭ СПбГУПТД, 2017. 74 с.
  34. Солнцев Ю.П., Пряхин Е.И. Материаловедение. М.: Химиздат, 2020. 640 с.
  35. Первов М.Л., Васильева А.В. Производство изделий из гранулируемых алюминиевых сплавов. Рыбинск: РГАТУ им. П. А. Соловьева, 2015. 48 с.
  36. Балахонцев Г.А., Барбанель Р.И., Бондарев Б.И. и др. Производство полуфабрикатов из алюминиевых сплавов. М.: Металлургия, 1985. 352 с.
  37. Pervikov A.V., Lоzhkomoev A.S., Bakina O.V. et al. // Russ. Phys. J. 2021. V. 63. № 9. P. 1557. https://doi.org/10.1007/s11182-021-02206-8
  38. Shi H., Wu J., Li X. et al. // Plasma Sources Sci. Technol. 2019. V. 28. № 8. P. 085010. https://doi.org/10.1088/1361-6595/ab216f
  39. Svarovskaya N.V., Bakina O.V., Pervikov A.V. et al. // Russ. Phys. J. 2020. V. 62. № 9. P. 1580. https://doi.org/10.1007/s11182-020-01879-x
  40. Pervikov A.V., Dvilis E.S., Khrustalev A. et al. // Inorg. Mater. Appl. Res. 2021. V. 12. № 3. P. 755. https://doi.org/10.1134/S207511332103028X
  41. Pervikov A.V., Lerner M.I., Bakina O.V. et al. // Inorg. Mater. Appl. Res. 2019. V. 10. № 3. P. 699. https://doi.org/10.1134/S2075113319030328
  42. Kim W., Park J.-S., Suh C.-Y. et al. // Mater. Lett. 2007. V. 61. № 21. P. 4259. https://doi.org/10.1016/j.matlet.2007.01.106
  43. Wang Q., Yang H., Shi J. et al. // Mater. Sci. Eng., A. 2001. V. 307. № 1–2. P. 190. https://doi.org/10.1016/S0921-5093(00)01966-3
  44. Lee J.-G., Li P., Choi C.-J. et al. // Thin Solid Films. 2010. V. 519. № 1. P. 81. https://doi.org/10.1016/j.tsf.2010.07.063
  45. Mao A., Xiang H., Ran X. et al. // J. Alloys Compd. 2019. V. 775. P. 1177. https://doi.org/10.1016/j.jallcom.2018.10.170
  46. Filatov E.Y., Novopashin S.A., Korenev S.V. // Russ. J. Inorg. Chem. 2013. V. 58. № 1. P. 78. https://doi.org/10.1134/S0036023613010063
  47. Karbalaei Akbari M., Derakhshan R., Mirzaee O. // Chem. Eng. J. 2015. V. 259. P. 918. https://doi.org/10.1016/j.cej.2014.08.053
  48. Fujimoto T., Terauchi S., Umehara H. et al. // Chem. Mater. 2001. V. 13. № 3. P. 1057. https://doi.org/10.1021/cm000910f
  49. Баранчиков А.Е., Иванов В.К., Третьяков Ю.Д. // Успехи химии. 2007. Т. 76. № 2. С. 147.
  50. Suslick K.S., Hyeon T., Fang M. et al. // Mater. Sci. Eng., A. 1995. V. 204. № 1–2. P. 186. https://doi.org/10.1016/0921-5093(95)09958-1
  51. Shafi K.V.P.M., Gedanken A., Prozorov R. // J. Mater. Chem. 1998. V. 8. № 3. P. 769. https://doi.org/10.1039/a706871i
  52. Shafi K.V.P.M., Gedanken A., Goldfarb R.B. et al. // J. Appl. Phys. 1997. V. 81. № 10. P. 6901. https://doi.org/10.1063/1.365250
  53. Matin M.A., Jang J.-H., Kwon Y.-U. // Int. J. Hydrogen Energy. 2014. V. 39. № 8. P. 3710. https://doi.org/10.1016/j.ijhydene.2013.12.137
  54. Singh G., Kapoor I.P.S., Dubey S. // J. Alloys Compd. 2009. V. 480. № 2. P. 270. https://doi.org/10.1016/j.jallcom.2009.02.024
  55. Srivastava P., Dubey R., Kapoo P.S.I. et al. // Indian J. Chem. 2010. V. 49A. P. 1339.
  56. Xu Y., Yuan Y., Ma A. et al. // ChemPhysChem. 2012. V. 13. № 10. P. 2601. https://doi.org/10.1002/cphc.201100989
  57. Zakharov Y.A., Pugachev V.M., Bogomyakov A.S. et al. // J. Phys. Chem. C. 2020. V. 124. № 1. P. 1008. https://doi.org/10.1021/acs.jpcc.9b07897
  58. Zhang J.-M., Wang R.-X., Nong R.-J. et al. // Int. J. Hydrogen Energy. 2017. V. 42. № 10. P. 7226. https://doi.org/10.1016/j.ijhydene.2016.05.198
  59. Singh S., Srivastava P., Singh G. // J. Alloys Compd. 2013. V. 562. P. 150. https://doi.org/10.1016/j.jallcom.2013.02.034
  60. Liu X., Fu G., Chen Y. et al. // Chem. Eur. J. 2014. V. 20. № 2. P. 585. https://doi.org/10.1002/chem.201302834
  61. Wang Z.-L., Ping Y., Yan J.-M. et al. // Int. J. Hydrogen Energy. 2014. V. 39. № 10. P. 4850. https://doi.org/10.1016/j.ijhydene.2013.12.148
  62. Liu Y., Shen X. // J. Saudi Chem. Soc. 2019. V. 23. № 8. P. 1032. https://doi.org/10.1016/j.jscs.2019.05.012
  63. Mohamed Saeed G.H., Radiman S., Gasaymeh S.S. et al. // J. Nanomater. 2010. V. 2010. P. 1. https://doi.org/10.1155/2010/184137
  64. Perry R.H., Green D.W. Perry’s Сhemical Еngineers’ Handbook. McGraw-Hill Professional, 1997. 2640 p.
  65. Некрасов Б.В. Основы общей химии. М.: Химия, 1973. Т. 2. 340 с.
  66. Yang T.-K., Lee D.-S., Haas J. // Encycl. Reagents Org. Synth. 2005. P. 1.
  67. Xu C., Wang L., Mu X. et al. // Langmuir. 2010. V. 26. № 10. P. 7437. https://doi.org/10.1021/la9041474
  68. Qi Z., Geng H., Wang X. et al. // J. Power Sources. 2011. V. 196. № 14. P. 5823. https://doi.org/10.1016/j.jpowsour.2011.02.083
  69. Shui J.L., Chen C., Li J.C.M. // Adv. Funct. Mater. 2011. V. 21. № 17. P. 3357. https://doi.org/10.1002/adfm.201100723
  70. Liu L., Scholz R., Pippel E. et al. // J. Mater. Chem. 2010. V. 20. № 27. P. 5621. https://doi.org/10.1039/C0JM00113A
  71. Wang D., Zhao P., Li Y. // Sci. Rep. 2011. V. 1. № 1. P. 37. https://doi.org/10.1038/srep00037
  72. Du C., Chen M., Wang W. et al. // ACS Appl. Mater. Interfaces. 2011. V. 3. № 2. P. 105. https://doi.org/10.1021/am100803d
  73. Liu L., Pippel E., Scholz R. et al. // Nano Lett. 2009. V. 9. № 12. P. 4352. https://doi.org/10.1021/nl902619q
  74. Guryanov A.M., Yudin S.N., Kasimtsev A.V. et al. // Inorg. Mater. 2023. V. 59. № 5. P. 463. https://doi.org/10.1134/S0020168523050059
  75. Snyder J., Asanithi P., Dalton A.B. et al. // Adv. Mater. 2008. V. 20. № 24. P. 4883. https://doi.org/10.1002/adma.200702760
  76. Erlebacher J., Investigator P., Program D.O.E. et al. // Rev. Lit. Arts Am. 2010. P. 1.
  77. Chen L.Y., Chen N., Hou Y. et al. // ACS Catal. 2013. V. 3. № 6. P. 1220. https://doi.org/10.1021/cs400135k
  78. Ou S., Ma D., Li Y. et al. // J. Alloys Compd. 2017. V. 706. P. 215. https://doi.org/10.1016/j.jallcom.2017.02.203
  79. Zeng L., You C., Cai X. et al. // J. Mater. Res. Technol. 2020. V. 9. № 3. P. 6909.
  80. Joo S.-H., Kato H. // Mater. Des. 2020. V. 185. P. 108271. https://doi.org/10.1016/j.matdes.2019.108271
  81. Кирилович А.К., Плюснин П.Е., Пирязев Д.А. и др. // Журн. неорган. химии. 2017. Т. 62. № 7. С. 905.
  82. Heck R.M., Farrauto R.J. // Appl. Catal., A: Gen. 2001. V. 221. № 1–2. P. 443. https://doi.org/10.1016/S0926-860X(01)00818-3
  83. Zadesenets A.V., Filatov E.Y., Yusenko K.V. et al. // Inorg. Chim. Acta. 2008. V. 361. № 1. P. 199. https://doi.org/10.1016/j.ica.2007.07.006
  84. Zadesenets A.V., Filatov E.Y., Plyusnin P.E. et al. // New J. Chem. 2018. V. 42. № 11. P. 8843. https://doi.org/10.1039/C8NJ00956B
  85. Zadesenets A.V., Venediktov A.B., Shubin Y.V. et al. // Russ. J. Inorg. Chem. 2007. V. 52. № 4. P. 500. https://doi.org/10.1134/S0036023607040067
  86. Vedyagin A.A., Plyusnin P.E., Rybinskaya A.A. et al. // Mater. Res. Bull. 2018. V. 102. P. 196. https://doi.org/10.1016/j.materresbull.2018.02.038
  87. Shubin Y.V., Zadesenets A.V., Venediktov A.B. et al. // Russ. J. Inorg. Chem. 2006. V. 51. № 2. P. 202. https://doi.org/10.1134/S0036023606020070
  88. Shubin Y.V., Plyusnin P.E., Korenev S.V. // J. Alloys Compd. 2015. V. 622. P. 1055. https://doi.org/10.1016/j.jallcom.2014.10.187
  89. Vedyagin A.A., Stoyanovskii V.O., Plyusnin P.E. et al. // J. Alloys Compd. 2018. V. 749. P. 155. https://doi.org/10.1016/j.jallcom.2018.03.250
  90. Семушина Ю.П., Плюснин П.Е., Шубин Ю.В. и др. // Изв. Акад. наук. 2015. V. 8. P. 1963.
  91. Zadesenets A., Filatov E., Plyusnin P. et al. // Polyhedron. 2011. V. 30. № 7. P. 1305. https://doi.org/10.1016/j.poly.2011.02.012
  92. Kostin G.A., Borodin A.O., Kuratieva N.V. et al. // Inorg. Chim. Acta. 2017. V. 457. P. 145. https://doi.org/10.1016/j.ica.2016.12.016
  93. Asanova T.I., Asanov I.P., Kim M.-G. et al. // J. Nanoparticle Res. 2013. V. 15. № 10. P. 1994. https://doi.org/10.1007/s11051-013-1994-6
  94. Shubin Y.V., Vedyagin A.A., Plyusnin P.E. et al. // J. Alloys Compd. 2018. V. 740. P. 935. https://doi.org/10.1016/j.jallcom.2017.12.127
  95. Potemkin D.I., Maslov D.K., Loponov K. et al. // Front. Chem. 2018. V. 6. https://doi.org/10.3389/fchem.2018.00085
  96. Shubin Y., Plyusnin P., Sharafutdinov M. // Nanotechnology. 2012. V. 23. № 40. P. 405302. https://doi.org/10.1088/0957-4484/23/40/405302
  97. Simonov A.N., Plyusnin P.E., Shubin Y.V. et al. // Electrochim. Acta. 2012. V. 76. P. 344. https://doi.org/10.1016/j.electacta.2012.05.043
  98. Shubin Y., Plyusnin P., Sharafutdinov M. et al. // Nanotechnology. 2017. V. 28. № 20. P. 205302. https://doi.org/10.1088/1361-6528/aa6bc9
  99. Plyusnin P.E., Makotchenko E.V., Shubin Y.V. et al. // J. Mol. Struct. 2015. V. 1100. P. 174. https://doi.org/10.1016/j.molstruc.2015.07.023
  100. Макотченко Е.В., Плюснин П.Е., Шубин Ю.В. и др. // Журн. неорган. химии. 2017. Т. 62. № 1. С. 15. https://doi.org/10.7868/S0044457X17010111
  101. Potemkin D.I., Snytnikov P.V., Semitut E.Y. et al. // Catal. Ind. 2014. V. 6. № 1. P. 36. https://doi.org/10.1134/S2070050414010073
  102. Potemkin D.I., Semitut E.Y., Shubin Y.V. et al. // Catal. Today. 2014. V. 235. P. 103. https://doi.org/10.1016/j.cattod.2014.04.026
  103. Martynova S.A., Filatov E.Y., Korenev S.V. et al. // J. Solid State Chem. 2014. V. 212. P. 42. https://doi.org/10.1016/j.jssc.2014.01.008
  104. Гладышева М.В., Плюснин П.Е., Шубин Ю.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 8. С. 1041.
  105. Руднев А.В., Лысакова А.С., Плюснин П.Е. и др. // Неорган. материалы. 2014. Т. 50. № 6. С. 613. https://doi.org/10.7868/S0002337X14060153
  106. Бауман Ю.И., Руднева Ю.В., Мишаков И.В. и др. // Кинетика и катализ. 2018. Т. 59. № 3. С. 371. https://doi.org/10.7868/s0453881118030176
  107. Xie X., Li Y., Liu Z.-Q. et al. // Nature. 2009. V. 458. № 7239. P. 746. https://doi.org/10.1038/nature07877
  108. Twigg M.V. // Appl. Catal., B: Environ. 2007. V. 70. № 1–4. P. 2. https://doi.org/10.1016/j.apcatb.2006.02.029
  109. Loza K., Heggen M., Epple M. // Adv. Funct. Mater. 2020. V. 30. № 21. https://doi.org/10.1002/adfm.201909260
  110. Ha H., Yoon S., An K. et al. // ACS Catal. 2018. V. 8. № 12. P. 11491. https://doi.org/10.1021/acscatal.8b03539
  111. Yuan W., Zhu B., Fang K. et al. // Science (80-). 2021. V. 371. № 6528. P. 517. https://doi.org/10.1126/science.abe3558
  112. Saavedra J., Pursell C.J., Chandler B.D. // J. Am. Chem. Soc. 2018. V. 140. № 10. P. 3712. https://doi.org/10.1021/jacs.7b12758
  113. van Spronsen M.A., Frenken J.W.M., Groot I.M.N. // Chem. Soc. Rev. 2017. V. 46. № 14. P. 4347. https://doi.org/10.1039/C7CS00045F
  114. Гаркуль И.А., Задесенец А.В., Плюснин П.Е. и др. // Журн. неорган. химии. 2020. Т. 65. № 10. С. 1371. https://doi.org/10.31857/S0044457X20100062
  115. Potemkin D.I., Filatov E.Y., Zadesenets A.V. et al. // Catal. Commun. 2017. V. 100. P. 232. https://doi.org/10.1016/j.catcom.2017.07.008
  116. Potemkin D.I., Filatov E.Y., Zadesenets A.V. et al. // Mater. Lett. 2020. V. 260. P. 126915. https://doi.org/10.1016/j.matlet.2019.126915
  117. Potemkin D.I., Saparbaev E.S., Zadesenets A.V. et al. // Catal. Ind. 2018. V. 10. № 1. P. 62. https://doi.org/10.1134/S2070050418010099
  118. Potemkin D.I., Konishcheva M.V., Zadesenets A.V. et al. // Kinet. Catal. 2018. V. 59. № 4. P. 514. https://doi.org/10.1134/S0023158418040110
  119. Потемкин Д.И., Снытников П.В., Бадмаев С.Д. и др. // Российские нанотехнологии. 2021. Т. 16. № 2. С. 215.
  120. Shubin Y.V., Plyusnin P.E., Kenzhin R.M. et al. // Kinet. Catal. 2023. V. 64. № 6. P. 922. https://doi.org/10.1134/S0023158423060149
  121. Laguna O.H., Pérez A., Centeno M.A. et al. // Appl. Catal., B: Environ. 2015. V. 176–177. P. 385. https://doi.org/10.1016/j.apcatb.2015.04.019
  122. Hossain S.T., Azeeva E., Zhang K. et al. // Appl. Surf. Sci. 2018. V. 455. P. 132. https://doi.org/10.1016/j.apsusc.2018.05.101
  123. Zhu C., Ding T., Gao W. et al. // Int. J. Hydrogen Energy. 2017. V. 42. № 27. P. 17457. https://doi.org/10.1016/j.ijhydene.2017.02.088
  124. Elazab H.A. // Biointerface Res. Appl. Chem. 2018. V. 8. № 3. P. 3278.
  125. Zhang X., Zhang X., Song L. et al. // Int. J. Hydrogen Energy. 2018. V. 43. № 39. P. 18279. https://doi.org/10.1016/j.ijhydene.2018.08.060
  126. Zhang X., Deng Y.-Q., Tian P. et al. // Appl. Catal., B: Environ. 2016. V. 191. P. 179. https://doi.org/10.1016/j.apcatb.2016.03.030
  127. Venkataswamy P., Rao K.N., Jampaiah D. et al. // Appl. Catal., B: Environ. 2015. V. 162. P. 122. https://doi.org/10.1016/j.apcatb.2014.06.038
  128. Li L., Chai S.-H., Binder A. et al. // RSC AdV. 2015. V. 5. № 121. P. 100212. https://doi.org/10.1039/C5RA11487J
  129. Zhan W., Wang J., Wang H. et al. // J. Am. Chem. Soc. 2017. V. 139. № 26. P. 8846. https://doi.org/10.1021/jacs.7b01784
  130. Kumar J., Deo G., Kunzru D. // Int. J. Hydrogen Energy. 2016. V. 41. № 41. P. 18494. https://doi.org/10.1016/j.ijhydene.2016.08.109
  131. Chen G., Zhao Y., Fu G. et al. // Science. 2014. V. 344. № 6183. P. 495. https://doi.org/10.1126/science.1252553
  132. Zhang X., Tian P., Tu W. et al. // ACS Catal. 2018. V. 8. № 6. P. 5261. https://doi.org/10.1021/acscatal.7b04287
  133. Wu C.H., Liu C., Su D. et al. // Nat. Catal. 2018. V. 2. № 1. P. 78. https://doi.org/10.1038/s41929-018-0190-6
  134. Michalak W.D., Krier J.M., Alayoglu S. et al. // J. Catal. 2014. V. 312. P. 17. https://doi.org/10.1016/j.jcat.2014.01.005
  135. Zhang H., Liu X., Zhang N. et al. // Appl. Catal., B: Environ. 2016. V. 180. P. 237. https://doi.org/10.1016/j.apcatb.2015.06.032
  136. Оленин А.Ю., Мингалев П.Г., Лисичкин Г.В. // Нефтехимия. 2018. Т. 58. № 4. С. 367.
  137. Wala M., Simka W. // Molecules. 2021. V. 26. № 8. P. 2144. https://doi.org/10.3390/molecules26082144
  138. Bai J., Liu D., Yang J. et al. // ChemSusChem. 2019. V. 12. № 10. P. 2117. https://doi.org/10.1002/cssc.201803063
  139. Peera S.G., Lee T.G., Sahu A.K. // Sustain. Energy Fuels. 2019. V. 3. № 8. P. 1866. https://doi.org/10.1039/C9SE00082H
  140. Tian H., Yu Y., Wang Q. et al. // Int. J. Hydrogen Energy. 2021. V. 46. № 61. P. 31202. https://doi.org/10.1016/j.ijhydene.2021.07.006
  141. Yuda A., Ashok A., Kumar A. // Catal. Rev. 2020. V. 64. № 1. P. 126. https://doi.org/10.1080/01614940.2020.1802811
  142. Wu P., Song L., Wang Y. et al. // Appl. Surf. Sci. 2021. V. 537. P. 148059. https://doi.org/10.1016/j.apsusc.2020.148059
  143. Yang X., Wang Q., Qing S. et al. // Adv. Energy Mater. 2021. V. 11. № 26. https://doi.org/10.1002/aenm.202100812
  144. Ding X., Li M., Jin J. et al. // Chin. Chem. Lett. 2022. V. 33. № 5. P. 2687. https://doi.org/10.1016/j.cclet.2021.09.076
  145. Ren F., Zhang Z., Liang Z. et al. // J. Colloid Interface Sci. 2022. V. 608. P. 800. https://doi.org/10.1016/j.jcis.2021.10.054
  146. Zhang J., Zhao T., Yuan M. et al. // J. Colloid Interface Sci. 2021. V. 602. P. 504. https://doi.org/10.1016/j.jcis.2021.06.028
  147. Fan F., Chen D.-H., Yang L. et al. // J. Colloid Interface Sci. 2022. V. 628. P. 153. https://doi.org/10.1016/j.jcis.2022.08.032
  148. You H., Gao F., Wang C. et al. // ChemElectroChem. 2021. V. 8. № 19. P. 3637. https://doi.org/10.1002/celc.202100864
  149. Alves L., Pereira V., Lagarteira T. et al. // Renew. Sustain. Energy Rev. 2021. V. 137. P. 110465. https://doi.org/10.1016/j.rser.2020.110465
  150. Gamal A., Eid K., El-Naas M.H. et al. // Nanomaterials. 2021. V. 11. № 5. P. 1226. https://doi.org/10.3390/nano11051226
  151. Park C., Engel E.S., Crowe A. et al. // Langmuir. 2000. V. 16. № 21. P. 8050. https://doi.org/10.1021/la9916068
  152. Rao C.N.R., Cheetham A.K. // J. Mater. Chem. 2001. V. 11. № 12. P. 2887. https://doi.org/10.1039/b105058n
  153. Rzepka M., Bauer E., Reichenauer G. et al. // J. Phys. Chem. B. 2005. V. 109. № 31. P. 14979. https://doi.org/10.1021/jp051371a
  154. Fan Y.-Y., Liao B., Liu M. et al. // Carbon N. Y. 1999. V. 37. № 10. P. 1649. https://doi.org/10.1016/S0008-6223(99)00165-7
  155. Шадринов Н.В., Нартахова С.И. // Науч. журн. КубГАУ. 2016. Т. 115. № 1. С. 1.
  156. Шадринов Н.В., Нартахова С.И. // Перспективные материалы. 2016. Т. 4. С. 53.
  157. Дрянин Р.А., Суздальцев О.В., Ананьев С.В. // Технические науки. 2014. Т. 5–6. № 27–28. С. 39. https://doi.org/10.15350/2221-9552.2014.5-6.0005
  158. Гербер Д.В. // Успехи в химии и химической технологии. 2011. Т. 25. № 6. С. 22.
  159. Pelsoci T.M. Composites Manufacturing Technologies: Applications in Automotive, Petroleum and Civil Infrastructure Industries. NIST GCR 04-863. National Institute of Standards and Technology, 2004. P. 74.
  160. Тимошков П.Н., Хрульков А.В., Язвенко Л.Н. // Труды ВИАМ. 2017. № 6. С. 7. https://doi.org/10.18577/2307-6046-2017-0-6-7-7
  161. Kim J.M., Choi W.B., Lee N.S. et al. // Diam. Relat. Mater. 2000. V. 9. № 3–6. P. 1184. https://doi.org/10.1016/S0925-9635(99)00266-6
  162. Saito Y., Hamaguchi K., Uemura S. et al. // Appl. Phys. A: Mater. Sci. Process. 1998. V. 67. № 1. P. 95. https://doi.org/10.1007/s003390050743
  163. Endo M., Kim Y., Hayashi T. et al. // Carbon N.Y. 2001. V. 39. № 9. P. 1287. https://doi.org/10.1016/S0008-6223(00)00295-5
  164. Subramanian V., Zhu H., Wei B. // J. Phys. Chem. B. 2006. V. 110. № 14. P. 7178. https://doi.org/10.1021/jp057080j
  165. Bezemer G.L., Bitter J.H., Kuipers H.P.C.E. et al. // J. Am. Chem. Soc. 2006. V. 128. № 12. P. 3956. https://doi.org/10.1021/ja058282w
  166. Takasaki M., Motoyama Y., Higashi K. et al. // Org. Lett. 2008. V. 10. № 8. P. 1601. https://doi.org/10.1021/ol800277a
  167. Maiyalagan T., Scott K. // J. Power Sources. 2010. V. 195. № 16. P. 5246. https://doi.org/10.1016/j.jpowsour.2010.03.022
  168. Zhu J., Zhou J., Zhao T. et al. // Appl. Catal., A: Gen. 2009. V. 352. № 1–2. P. 243. https://doi.org/10.1016/j.apcata.2008.10.012
  169. Pham-Huu C., Keller N., Ehret G. et al. // J. Mol. Catal. A: Chem. 2001. V. 170. № 1–2. P. 155. https://doi.org/10.1016/S1381-1169(01)00055-3
  170. Chand S. // J. Mater. Sci. 2000. V. 35. P. 1303.
  171. Wangxi Z., Jie L., Gang W. // Carbon N.Y. 2003. V. 41. № 14. P. 2805. https://doi.org/10.1016/S0008-6223(03)00391-9
  172. Чесноков В.В., Буянов Р.А. // Успехи химии. 2000. Т. 69. № 7. С. 675.
  173. Мишаков И.В., Буянов Р.А., Чесноков В.В. // Катализ в промышленности. 2002. № 4. С. 33.
  174. Мишаков И.В., Чесноков В.В., Буянов Р.А., Пахомов Н.А. // Кинетика и катализ. 2001. Т. 42. № 4. С. 598.
  175. Бауман Ю.И., Мишаков И.В., Ведягин А.А. и др. // Катализ в промышленности. 2012. № 2. С. 18.
  176. Мишаков И.В., Буянов Р.А., Зайковский В.И. и др. // Кинетика и катализ. 2008. V. 49. № 6. С. 916.
  177. Nieto-Marquez A., Valverde J.L., Keane M.A. // Appl. Catal., A: Gen. 2007. V. 332. P. 237. https://doi.org/10.1016/j.apcata.2007.08.028
  178. Chary K.V.R., Rao P.V.R., Vishwanathan V. // Catal. Commun. 2006. № 7. P. 974. https://doi.org/10.1016/j.catcom.2006.04.013
  179. Wang X., Feng Y., Unalan H.E. et al. // Carbon. 2011. V. 49. P. 214. https://doi.org/10.1016/j.carbon.2010.09.006
  180. Usoltseva A., Kuznetsov V., Rudina N. et al. // Рhys. Status Solidi. 2007. V. 244. № 11. P. 3920. https://doi.org/10.1002/pssb.200776143
  181. He L., Hu S., Yin X. et al. // Fuel. 2020. V. 276. P. 118116. https://doi.org/10.1016/j.fuel.2020.118116
  182. Yao D., Wang C.-H. // Appl. Energy. 2020. V. 265. P. 114819. https://doi.org/10.1016/j.apenergy.2020.114819
  183. Ayillath Kutteri D., Wang I.-W., Samanta A. et al. // Catal. Sci. Technol. 2018. V. 8. № 3. P. 858. https://doi.org/10.1039/C7CY01927K
  184. Audier M., Coulon M., Bonnetain L. // Carbon N. Y. 1983. V. 21. № 2. P. 93. https://doi.org/10.1016/0008-6223(83)90162-8
  185. Mishakov I.V., Kutaev N.V., Bauman Y.I. et al. // J. Struct. Chem. 2020. V. 61. № 5. P. 769. https://doi.org/10.1134/S0022476620050133
  186. Бауман Ю.И., Лысакова А.С., Руднев А.В. и др. // Российские нанотехнологии. 2014. Т. 9. № 7–8. С. 31.
  187. Mishakov I.V., Bauman Y.I., D’yachkova S.G. et al. // Dokl. Chem. 2023. V. 508. № 2. P. 62. https://doi.org/10.1134/S0012500823600086
  188. Bauman Y.I., Mishakov I.V., Vedyagin A.A. et al. // Top. Catal. 2017. V. 60. № 1–2. P. 171. https://doi.org/10.1007/s11244-016-0729-1
  189. Bauman Y.I., Mishakov I.V., Rudneva Y.V. et al. // Catal. Today. 2020. V. 348. P. 102. https://doi.org/10.1016/j.cattod.2019.08.015
  190. Potylitsyna A.R., Rudneva Y.V., Bauman Y.I. et al. // Materials (Basel). 2023. V. 16. № 2. P. 845. https://doi.org/10.3390/ma16020845
  191. Mishakov I.V., Bauman Y.I., Potylitsyna A.R. et al. // Kinet. Catal. 2022. V. 63. № 1. P. 75. https://doi.org/10.1134/S0023158422010037
  192. Shubin Y.V., Bauman Y.I., Plyusnin P.E. et al. // J. Alloys Compd. 2021. V. 866. P. 158778. https://doi.org/10.1016/j.jallcom.2021.158778
  193. Afonnikova S.D., Bauman Y.I., Stoyanovskii V.O. et al. // C. 2023. V. 9. № 3. P. 77. https://doi.org/10.3390/c9030077
  194. Shubin Y.V., Maksimova T.A., Popov A.A. et al. // Appl. Catal., A: Gen. 2024. V. 670. P. 119546. https://doi.org/10.1016/j.apcata.2023.119546
  195. Afonnikova S.D., Popov A.A., Bauman Y.I. et al. // Materials (Basel). 2022. V. 15. № 21. P. 7456. https://doi.org/10.3390/ma15217456
  196. Popov A.A., Afonnikova S.D., Varygin A.D. et al. // React. Kinet. Mech. Catal. 2023. V. 137. P. 323. https://doi.org/10.1007/s11144-023-02549-y
  197. Wang C., Bauman Y.I., Mishakov I.V. et al. // Processes. 2022. V. 10. № 3. P. 506. https://doi.org/10.3390/pr10030506
  198. Song R., Ji Q. // Chem. Lett. 2011. V. 40. № 10. P. 1110. https://doi.org/10.1246/cl.2011.1110
  199. Lobiak E.V., Shlyakhova E.V., Bulusheva L.G. et al. // J. Alloys Compd. 2015. V. 621. P. 351. https://doi.org/10.1016/j.jallcom.2014.09.220
  200. Zhou L.P., Ohta K., Kuroda K. et al. // J. Phys. Chem. B. 2005. V. 109. № 10. P. 4439. https://doi.org/10.1021/jp045284e
  201. Li Y., Zhang X.B., Tao X.Y. et al. // Carbon N. Y. 2005. V. 43. № 2. P. 295. https://doi.org/10.1016/j.carbon.2004.09.014
  202. Bauman Y.I., Rudneva Y.V., Mishakov I.V. et al. // Heliyon. 2019. V. 5. № 9. P. e02428. https://doi.org/10.1016/j.heliyon.2019.e02428
  203. Jang E., Park H.K., Choi J.H. et al. // Bull. Korean Chem. Soc. 2015. V. 36. № 5. P. 1452. https://doi.org/10.1002/bkcs.10285
  204. Zhang X., Liu Y., Deng J. et al. // Appl. Catal., B: Environ. 2019. V. 257. P. 117879. https://doi.org/10.1016/j.apcatb.2019.117879
  205. Zhang X., Dai L., Liu Y. et al. // Catal. Sci. Technol. 2020. V. 10. № 11. P. 3755. https://doi.org/10.1039/D0CY00681E

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Practically significant processes catalyzed by dispersed alloys

Download (208KB)
3. Fig. 2. Model images of particles of various types of alloys: solid solution (a); intermetallic (b); polyphase alloy (c); single-layer core-shell structure (d), variants of multilayer alloys of core-shell structure (e, f)

Download (532KB)
4. Fig. 3. SEM micrographies of Ni1–xPdx dispersed alloys (5 wt. % Pd) obtained at synthesis temperatures of 400 (a), 600 (b), 800 °C (c) [29]

Download (689KB)
5. Fig. 4. Schematic diagram of the production of bimetallic alloys by thermolysis of DCS using the reaction described in [91] as an example. The symbol Δ indicates the effect on the system (in this case, it is an increase in temperature)

Download (182KB)

Copyright (c) 2024 Russian Academy of Sciences