Influence of Ionic Liquid on the Extraction of Actinides and Lanthanides(III) with Phosphorylureas from Nitric Acid Solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of the ionic liquid 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide on the extraction of U(VI), Th(IV) and lanthanides(III) from nitric acid solutions with phosphorylureas RR'P(O)NHC(O)NHC8H17 n differing in the nature of the substituents at the phosphorus atom was studied. A significant synergistic effect was discovered during the extraction of metal ions in the presence of an ionic liquid in the organic phase. The stoichiometry of the extracted complexes was determined. The influence of the structure of the extractant, the nature of the organic diluent, and the concentration of HNO3 in the aqueous phase on the efficiency of the extraction of metal ions into the organic phase is considered.

Full Text

Restricted Access

About the authors

A. N. Turanov

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Author for correspondence.
Email: v_brel@mail.ru
Russian Federation, Chernogolovka

V. K. Karandashev

Institute of Microelectronics Technology and High Pure Materials of the Russian Academy of Sciences

Email: v_brel@mail.ru
Russian Federation, Chernogolovka

E. I. Goryunov

Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: v_brel@mail.ru
Russian Federation, Moscow

I. B. Goryunova

Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: v_brel@mail.ru
Russian Federation, Moscow

V. K. Brel

Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: v_brel@mail.ru
Russian Federation, Moscow

References

  1. Myasoedov B.F., Kalmykov S.N., Kulyako Yu.M., Vinokurov S.E. // Geochem. Int. 2016. V. 54. № 13. P. 1156. https://doi.org/10.1134/S0016702916130115
  2. Аляпышев М.Ю., Бабаин В.А., Устынюк Ю.А. // Успехи химии. 2016. Т. 85. № 9. С. 943.
  3. Leoncini A., Huskens J., Verboom W. // Chem. Soc. Rev. 2017. V. 46. № 23. P. 7229. https://doi.org/10.1039/C7CS00574A
  4. Wilson A.M., Bailey P.J., Tasker P.A. et al. // Chem. Soc. Rev. 2014. V. 43. № 1. P. 123. https://doi.org/10.1039/C3CS60275C
  5. Werner E.J., Biros S.M. // Org. Chem. Front. 2019. V. 6. № 12. P. 2067. https://doi.org/10.1039/c9qo00242a
  6. Matveeva A.G., Vologzhanina A.V., Goryunov E.I. et al. // Dalton Trans. 2016. V. 45. № 12. P. 5162. https://doi.org/10.1039/c5dt04963f
  7. Сафиулина А.М., Борисова Н.Е., Лизунов А.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 4. С. 513.
  8. Розен А.М., Крупнов Б.В. // Успехи химии. 1996. Т. 65. № 11. С. 1052.
  9. Platt A.W.G. // Coord. Chem. Rev. 2017. V. 340. P. 62. https://doi.org/10.1016/j.ccr.2016.09.012
  10. Чмутова М.К., Литвина М.Н., Прибылова Г.А. и др. // Радиохимия. 1999. Т. 41. № 4. С. 331.
  11. Goud E.V., Sivaramakrishna A., Vijayakrishna K. // Top Curr. Chem. (Z). 2017. V. 375. № 1 (10). https://doi.org/10.1007/s41061-016-0090-7
  12. Noth H. // Z. Naturforsch., B. 1982. V. 37. P. 1491.
  13. Navratil O., Herrmann E., Grossmann G. // Collect. Chesh. Chem. Commun. 1990. V. 55. № 2. P. 364. https://doi.org/10.1135/cccc19900364
  14. Sladec P., Navratil O., Herrmann E. // Czech. J. Phys. 1999. V. 49. Suppl. 1. P. 747. https://doi.org/10.1007/s10582-999-1058-4
  15. Тананаев И.Г., Летюшов А.А., Сафиуллина А.М. и др. // Докл. АН. 2008. Т. 422. № 6. С. 762. https://doi.org/10.1134/S0012500808100054
  16. Горюнов Е.И., Шипов А.Э., Горюнова И.Б. и др. // Докл. АН. 2011. Т. 438. № 4. С. 480. https://doi.org/10.1134/S0012500811060012
  17. Safiulina A.M., Goryunov E.I., Letyushov A.A. et al. // Mendeleev Commun. 2009. V. 19. № 5. P. 263. https://doi.org/10.1016/j.mencom.2009.09.010
  18. Горюнов Е.И., Баулина Т.В., Горюнова И.Б. и др. // Изв. АН. Сер. хим. 2014. № 1. С. 141.. https://doi.org/10.1007/s11172-014-0408-y
  19. Горюнов Е.И., Горюнова И.Б., Баулина Т.В. и др. // Рос. хим. журн. 2010. Т. 54. № 3. С. 45.
  20. Сафиулина А.М., Лизунов А.В., Семенов А.А. и др. // Аналитика. 2022. Т. 12. № 2. С. 114. https://doi.org/10.22184/2227-572X.2022.12.2.114.128
  21. Riano S., Foltova S.S., Binnemans K. // RSC Adv. 2020. V. 10. № 1. P. 307. https://doi.org/10.1039/c9ra08996a
  22. Raut D.R., Sharma S., Ghosh S.K., Mohapatra P.K. // Sep. Sci. Technol. 2017. V. 52. № 8. P. 1430. https://doi.org/10.1080/01496395.2017.1290112
  23. Khodakarami M., Alagha L. // Sep. Purif. Technol. 2020. V. 232. P. 115952. https://doi.org/10.1016/j.seppur.2019.115952
  24. Iqbal M., Waheed K., Rahat S.B. et al. // J. Radioanal. Nucl. Chem. 2020. V. 325. № 1. P. 1. https://doi.org/10.1007/s10967-020-07199-1
  25. Белова В.В. // Радиохимия. 2021. Т. 63. № 1. С. 3.
  26. Sun T., Zhang Y., Wu Q. et al. // Solvent Extr. Ion Exch. 2017. V. 35. P. 408. https://doi.org/10.1080/07366299.2017.1379142
  27. Туранов А.Н., Карандашев В.К., Яркевич А.Н. // Радиохимия. 2022. Т. 64. № 2. С. 164.
  28. Turanov A.N., Karandashev V.K., Sharova E.V. et al. // Radiochim. Acta. 2023. V. 111. № 8. P. 601. https://doi.org/10.1515/ract-2022-0096
  29. Туранов А.Н., Карандашев В.К., Артюшин О.И. и др. // Радиохимия. 2021. Т. 63. № 2. С. 132. https://doi.org/10.1134/S106636222100020953
  30. Gaillard C., Boltoeva M., Billard I. et al. // ChemPhysChem. 2015. V. 16. № 12. P. 2653. https://doi.org/ 10.1002/cphc.201500283
  31. Horwitz E.P., Martin K.A., Diamond H., Kaplan L. // Solvent Extr. Ion Exch. 1986. V. 4. № 3. P. 449. https://doi.org/10.1080/07366298608917877
  32. Шадрин А.Ю., Бабаин В.А., Киселева Р.Н. // Радиохимия. 1993. Т. 35. № 1. С. 45.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the distribution coefficients U(VI) on the concentration of HNO3 in the equilibrium aqueous phase during extraction with 0.01 M solutions of compounds 1-4 in chloroform

Download (97KB)
3. Fig. 2. Dependence of the distribution coefficients of Th(IV) on the concentration of HNO3 in the equilibrium aqueous phase during extraction with 0.01 M solutions of compounds 1-4 in chloroform

Download (106KB)
4. Fig. 3. Dependence of the distribution coefficients Th(IV) (1-3) and U(VI) (4-6) on the concentration of HNO3 in the equilibrium aqueous phase during extraction with 0.003 M solutions of compounds 1 (1, 5), 2 (3, 6) and 3 (2, 4) in chloroform containing 0.1 mol/L bmimTf2N

Download (127KB)
5. Fig. 4. Distribution coefficients of Ln(III) upon extraction with 0.05 M solutions of compounds 1 (1, 3), 2 (2, 5), 3 (4, 6) and 4 (7) in chloroform (3, 5, 6) and in chloroform containing 0.1 mol/l bmimTf2N (1, 2, 4, 7), from a 3 M HNO3 solution

Download (139KB)
6. Fig. 5. Dependence of the distribution coefficients Eu(III) (1, 4), La(III) (2, 5) and Lu(III) (3, 6) on the concentration of HNO3 in the equilibrium aqueous phase upon extraction with 0.05 M solutions of compound 1 in chloroform (4-6) and in chloroform containing 0.1 mol/L bmimTf2N (1-3)

Download (121KB)
7. Fig. 6. Distribution coefficients of Ln(III) upon extraction with 0.02 M solutions of compounds 1 (3, 4, 5) and 5 [29] (1, 2) in dichloroethane (1, 4), chloroform (2, 3) and nitrobenzene (5) containing 0.1 mol/l bmimTf2N, from a 3 M HNO3 solution

Download (139KB)
8. Supplementary
Download (293KB)

Copyright (c) 2024 Russian Academy of Sciences