Structure and photocatalytic activity of composites of semiconducting nanoparticles in polymethylmethacrylate
- Authors: Maksimov S.E.1, Yanushkevich K.O.1, Tishkevich D.I.2, Borisenko V.E.1
-
Affiliations:
- Belarusian State University of Informatics and Radioelectronics
- SSPA Scientific-Practical Materials Research Centre of NAS of Belarus
- Issue: Vol 69, No 6 (2024)
- Pages: 928-934
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://rjonco.com/0044-457X/article/view/666515
- DOI: https://doi.org/10.31857/S0044457X24060153
- EDN: https://elibrary.ru/XSRFRV
- ID: 666515
Cite item
Abstract
We fabricated and studied composites made of titania (TiO2), zinc oxide (ZnO) or graphitic carbon nitride (g-C3N4) nanoparticles (20–100 nm) in polymethylmethacrylate (PMMA). Nanodispersed powders of these semiconductors were mixed with mechanically grinded PMMA at a weight ratio ranging from 1 : 5 to 1 : 20. The mixture was dissolved in acetone and deposited on to the surface of water. Upon solidification and drying in air porous discs as thick as 50–200 μm were formed. They were found to have a mechanical durability at the semiconductor to PMMA ratio above 1 : 20. Scanning electron microscopy, energy dispersive x-ray spectroscopy, x-ray difractomenry of the samples demonstrated that semiconducting nanoparticles are quasiuniformly distributed in the polymer matrix. Their crystal structure, the particle size and the composition do not change in comparison to those before synthesis of the composites. Photocatalytic activity of the synthesized composites estimated by decolarization of water solution of the test dye (methylene blue) under UV irradiation was found to be reduced in the sequence TiO2, g-C3N4, ZnO.
Keywords
Full Text

About the authors
S. E. Maksimov
Belarusian State University of Informatics and Radioelectronics
Author for correspondence.
Email: maksimov914@gmail.com
Belarus, P. Browka 6, Minsk, 220013
K. O. Yanushkevich
Belarusian State University of Informatics and Radioelectronics
Email: maksimov914@gmail.com
Belarus, P. Browka 6, Minsk, 220013
D. I. Tishkevich
SSPA Scientific-Practical Materials Research Centre of NAS of Belarus
Email: maksimov914@gmail.com
Belarus, P. Browka 19, Minsk, 220072
V. E. Borisenko
Belarusian State University of Informatics and Radioelectronics
Email: maksimov914@gmail.com
Belarus, P. Browka 6, Minsk, 220013
References
- Aleksandra B.D., Yanling He, Alan M.C.Ng // APL Mater. 2020. V. 8. № 3. P. 030903. https://doi.org/10.1063/1.5140497
- Uribe-Lopez M.C., Hidalgo-Lopez M.C., Lopez-Gonzalez R. et al. // J. Photochem. Photobiol. A: Chem. 2021. V. 404. P. 112866. https://doi.org/10.1016/j.jphotochem.2020.112866
- Muhammad Azam Qamar, Mohsin Javed, Sammia Shahid et al. // Heliyon. 2023. V. 9. № 1. P. e12685. https://doi.org/10.1016/j.heliyon.2022.e12685
- Xingxing Yang, Yongli Ye, Jiadi Sun et al. // Small. 2022. V. 18. № 9. P. 2105089. https://doi.org/10.1002/smll.202105089
- Suprabha Yadav, Anuj Mittal, Shankar Sharma et al. // Semiconductor Sci. Technol. 2020. V. 34. № 5. P. 055008. https://doi.org/10.1088/1361-6641/ab7776
- David James Martin, Kaipei Qiu, Dr. Stephen Andrew Shevlin et al. // Angewandte Chemie Int. Ed. 2014. V. 53. № 35. P. 9240. https://doi.org/10.1002/anie.201403375
- Xueze Chu, Satish C.I, Jae-Hun Yang, Xinwei Guan et al. // Small. 2023. V. 19. № 41. P. 2302875. https://doi.org/10.1002/smll.202302875
- Козлов Д.А., Артамонов К.А., Ревенко А.О. и др. // Журн. неорган. химии. 2022. Т. 67. № 5. С. 653. https://doi.org/10.31857/S0044457X22050105
- Yasuo I. // Coordination Chem. Rev. 2013. V. 257. P. 171. https://doi.org/10.1016/j.ccr.2012.04.018
- Yinghui Wang, Lizhen Liu, Tianyi Ma et al. // Adv. Functional Mater. 2021. V. 31. № 34. P. 2102540. https://doi.org/10.1002/adfm.202102540
- Manviri Rani, Uma Shanker // Colloids and Surfaces A: Physicochem Engineer. Aspects. 2018. V. 559. P. 136. https://doi.org/10.1016/j.colsurfa.2018.09.040
- Sathya S., Sriyutha Murthy P., Gayathri Devi V. et al. // Mater. Sci. Engineer. C. 2019. V. 100. P. 886. https://doi.org/10.1016/j.msec.2019.03.053
- Siyu Wang, Xiaohui Dai, Fei Li et al. // J. Porous Mater. 2019. V. 2. P. 465. https://doi.org/10.1007/s10934-019-00828-5
- Barabaszová K.Č., Holešová S., Hundáková M. et al. // Polymers. 2020. V. 12. № 12. P. 2811. https://doi.org/10.3390/polym12122811
- Chia-Hung Chao, Chien-Te Hsieh, Wen-Jie Ke et al. // J. Power Sources. 2021. V. 482. № 15. P. 228896. https://doi.org/10.1016/j.jpowsour.2020.228896
- Dandan Qin, Wangyang Lu, Xiyi Wang et al. // ACS Appl. Mater. Interf. 2016. V. 8. № 39. P. 25962. https://doi.org/10.1021/acsami.6b07680
- Aysan Joodi, Somaiyeh Allahyari, Nader Rahemi et al. // Ceramics Int. 2020. V. 46. № 8. P. 11328. https://doi.org/10.1016/j.ceramint.2020.01.162
- Masuda Y. // Scientific Rep. 2020. V. 10. № 1. P. 13499. https://doi.org/10.1038/s41598-020-70525-w
- Денисов Н.М., Чубенко Е.Б., Бондаренко В.П. и др. // Письма в ЖТФ. 2019. Т. 45. № 3. С. 49. https://doi.org/10.1134/S1063785019020068
- Chubenko E.B., Baglov A.V., Fedotova Yu.A. et al. // Inorg. Maters. 2021. V. 57. №. 2. P. 136. https://doi.org/10.1134/S0020168521020059
- Baglov A.V., Chubenko E.B., Hnitsko A.A. et al. // Carbon Systems. 2020. V. 54. № 2. P. 228. https://doi.org/10.1134/S1063782620020049
- Theivasanthi T., Alagar M. // Chemical Physics. 2013. arXiv:1307.1091.
- Satyanaratana T., Srinivasa R.K., Nagarjuna G. // Research Article. 2012. V. 2012. P. 372505. https://doi.org/10.5402/2012/372505
- Wayne R.P. Principles and Applications of Photochemistry. London: Oxford University Press, 1988. P. 268.
- Сидорова Т.Н., Данилюк А.Л., Борисенко В.Е. // Доклады Национальной академии наук Беларуси. 2017. T. 61. № 6. С. 42.
Supplementary files
