Quantum chemical modeling of supertetrahedral crystal structures containing C4 and X4 (X = B, Al, Ga) tetrahedra

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using quantum chemical calculations performed within the framework of electron density functional theory, the structural, mechanical, thermal, electrical and optical properties of three new mixed-type supertetrahedral structures based on the diamond crystal lattice were studied, in which pairs of neighboring carbon atoms are replaced by a pair of tetrahedra, one of which consists of four carbon atoms, and the second of four boron, aluminum or gallium atoms. The calculations have shown that all three crystalline structures should be structurally stable and have a low density, and the density of the aluminum-carbon structure should be even lower than the density of water (0.97 g/cm3). The boron-carbon structure should have the highest hardness (24 GPa), the hardness of the other two structures should be four times lower. All three crystal structures should be narrow-gap semiconductors with a band gap of 0.65–1.87 eV.

About the authors

I. V. Getmanskii

Southern Federal University

Author for correspondence.
Email: ipoc-sfu@mail.ru

Research Institute of Physical and Organic Chemistry

Russian Federation, Rostov-on-Don

S. А. Zaitsev

Southern Federal University

Email: ipoc-sfu@mail.ru

Research Institute of Physical and Organic Chemistry

Russian Federation, Rostov-on-Don

V. V. Koval

Southern Federal University

Email: ipoc-sfu@mail.ru

Research Institute of Physical and Organic Chemistry

Russian Federation, Rostov-on-Don

R. М. Minyaev

Southern Federal University

Email: ipoc-sfu@mail.ru

Research Institute of Physical and Organic Chemistry

Russian Federation, Rostov-on-Don

References

  1. Minkin V.I., Minyaev R.M. // Russ. Chem. Rev. 1982. V. 51. P. 332. https://doi.org/10.1070/RC1982v051n04ABEH002844
  2. Brown H.C. The Nonclassical Ion Problem. New York: Springer, 1977. 302 p. https://doi.org/10.1007/978-1-4613-4118-5
  3. Greenberg Α., Liebman J.F. Strained Organic Molecules. New York: Acad. Press, 1978. 406 p.
  4. Minyaev R.M., Getmanskii I.V., Minkin V.I. // Russ. J. Inorg. Chem. 2014. V. 59. P. 332. 406 p. https://doi.org/10.1134/S0036023614040123
  5. Minyaev R.M., Popov I.A., Koval V.V. et al. // Struct. Chem. 2015. V. 26. P. 223. https://doi.org/10.1007/s11224-014-0540-1
  6. Charkin O.P. // Russ. J. Inorg. Chem. 2019. V. 64. P. 615. https://doi.org/10.1134/S0036023619050048
  7. Klyukin I.N., Kolbunova A.V., Novikov A.S. et al. // Inorganics. 2023. V. 11. P. 201. https://doi.org/10.3390/inorganics11050201
  8. Zyubin A.S., Zyubina T.S., Dobrovol’skii Yu.A., Volokhov V.M. // Russ. J. Inorg. Chem. 2016. V. 61. P. 48. https://doi.org/10.1134/S0036023616010241
  9. Matveev E.Yu., Kubasov A.S., Nichugovskii A.I. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 644. https://doi.org/10.1134/S0036023623600545
  10. Burdett J.K., Lee S. // J. Am. Chem. Soc. 1985. V. 107. P. 3063. https://dx.doi.org/10.1021/ja00297a011
  11. Johnston R.L., Hoffmann R. // J. Am. Chem. Soc. 1989. V. 111. P. 810. https://doi.org/10.1021/ja00185a004
  12. Minyaev R.M., Avakyan V.E. // Dokl. Chem. 2010. V. 434. P. 253. https://doi.org/10.1134/S0012500810100010
  13. Sheng X.-L., Yan Q.-B., Ye F. et al. // Phys. Rev. Lett. 2011. V. 106. P. 155703. https://doi.org/10.1103/PhysRevLett.106.155703
  14. Zhang J., Wang R., Zhu X. et al. // Nature Comm. 2017. V. 8. P. 683. https://doi.org/10.1038/s41467-017-00817-9
  15. Haunschild R., Frenking G. // Mol. Phys. 2009. V. 107. P. 911. http://dx.doi.org/10.1080/00268970802680505
  16. Getmanskii I.V., Minyaev R.M., Steglenko D.V. et al. // Angew. Chem. Int. Ed. 2017. V. 56. P. 10118. https://doi.org/10.1002/anie.201701225
  17. Getmanskii I.V., Koval V.V., Minayev R.M. et al. // J. Phys. Chem. C. 2017. V. 121. P. 22187. http://dx.doi.org/10.1021/acs.jpcc.7b07565
  18. Getmanskii I.V., Koval V.V., Minyaev R.M. et al. // J. Comput. Chem. 2019. V. 40. P. 1861. https://doi.org/10.1002/jcc.25837
  19. Kresse G., Hafner J. // Phys. Rev. B: Condens. Matter Mater. Phys. 1993. V. 47. P. 558. https://doi.org/10.1103/PhysRevB.47.558
  20. Kresse G., Hafner J. // Phys. Rev. B: Condens. Matter Mater. Phys. 1994. V. 49. P. 14251. https://doi.org/10.1103/PhysRevB.49.14251
  21. Kresse G., Furthmüller J. // Phys. Rev. B: Condens. Matter Mater. Phys. 1996. V. 54. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
  22. Kresse G., Furthmüller J. // Comput. Mater. Sci. 1996. V. 6. P. 15. https://doi.org/10.1016/0927-0256(96)00008-0
  23. Perdew J.P., Ruzsinszky A., Csonka G.I. et al. // Phys. Rev. Lett. 2008. V. 100. P. 136406. https://doi.org/10.1103/PhysRevLett.100.136406
  24. Blöchl P.E. // Phys. Rev. B: Condens. Matter Mater. Phys. 1994. V. 50. P. 17953. https://doi.org/10.1103/PhysRevB.50.17953
  25. Kresse G., Joubert D. // Phys. Rev. B: Condens. Matter Mater. Phys. 1999. V. 59. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
  26. Monkhorst H.J., Pack J.D. // Phys. Rev. B: Condens. Matter Mater. Phys. 1976. V. 13. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
  27. Togo A., Chaput L., Tadano T., Tanaka I. // J. Phys.: Condens. Matter. 2023. V. 35. P. 353001. http://dx.doi.org/10.1088/1361-648X/acd831
  28. Togo A. // J. Phys. Soc. Jpn. 2023. V. 92. № 012001. http://dx.doi.org/10.7566/JPSJ.92.012001
  29. Togo A., Chaput L., Tanaka I. // Phys. Rev. B. 2015. V. 91. № 094306. https://doi.org/10.1103/PhysRevB.91.094306
  30. Hill R. // Proc. Phys. Soc. A. 1952. V. 65. P. 349. https://doi.org/10.1088/0370–1298/65/5/307
  31. Šimůnek A., Vackář J. // Phys. Rev. Lett. 2006. V. 96. P. 085501. https://doi.org/10.1103/PhysRevLett.96.085501
  32. Liu Z.Y., Guo X., He J. // Phys. Rev. Lett. 2007. V. 98. P. 109601. https://doi.org/10.1103/PhysRevLett.98.109601
  33. Šimůnek A., Vackář J. // Phys. Rev. Lett. 2007. V. 98. P. 109602. https://doi.org/10.1103/PhysRevLett.98.109602
  34. Šimůnek A., Vackář J. // Phys. Rev. B. 2007. V. 75. P. 172108. https://doi.org/10.1103/PhysRevB.75.172108
  35. Frisch M.J. et al. Gaussian 16, Revision C.01 / Gaussian, Inc. Wallingford CT, 2019. https://gaussian.com
  36. Zubarev D.Yu., Boldyrev A.I. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 5207. https://doi.org/10.1039/B804083D
  37. Tkachenko N.V., Boldyrev A.I. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 9590. https://doi.org/10.1039/C9CP00379G
  38. Schaftenaar G., Noordik J.H. // J. Comput. Aided Mol. Des. 2000. V. 14. P. 123. https://doi.org/10.1023/A:1008193805436
  39. Schaftenaar G., Vlieg E., Vriend G. // J. Comput. Aided Mol. Des. 2017. V. 31. P. 789. https://doi.org/10.1007/s10822–017–0042–5
  40. Humphrey W., Dalke A., Schulten K. // J. Mol. Graphics. 1996. V. 14. P. 33. https://doi.org/10.1016/0263–7855(96)00018–5
  41. POV-Ray 3.7.0 / Persistence of Vision Pty. Ltd. Williamstown, Victoria, Australia, 2013. https://www.povray.org
  42. Momma K., Izumi F. // J. Appl. Crystallogr. 2011. V. 44. P. 1272. https://doi.org/10.1107/S0021889811038970

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences