Metal ions extraction in the ammonium sulfate–oxyethylated nonylphenol (neonol AF 9-10)–water system in the presence of organic complexing agents

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using isothermal titration method and isothermal method of sections, phase equilibria in the ammonium sulfate–oxyethylated nonylphenol (neonol AF 9-10)–water at 25°C system were studied. Optimal extraction parameters (ratio neonol AF 9–10 : ammonium sulfate = 1 : 3, mass fraction of water 75.0 wt.%) were determined and the patterns of distribution of iron(III), copper(II), aluminum and indium ions in the system ammonium sulfate–oxyethylated nonylphenol (neonol AF 9-10)–water in the presence of acetylacetone and 1,2,3-benzotriazole were established . Conditions for the quantitative extraction of aluminum and copper(II) from ammonia media have been found. The conditions for the separation of copper(II) and iron(III) from zinc, cobalt(II) and indium in a neutral environment, as well as copper(II) from zinc and cobalt(II) at a content of 0.05–0.06 mol/l ammonia in the presence of acetylacetone were determined ; nickel from cobalt(II) and iron(III) at a content of 0.1–0.5 mol/l sulfuric acid in the presence of 1,2,3-benzotriazole.

About the authors

D. О. Shilykovskaya

Perm State University; Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences

Email: elhalex@yandex.ru
Russian Federation, Perm; Perm

D. Yu. Kuimova

Perm State University

Email: elhalex@yandex.ru
Russian Federation, Perm

А. М. Elokhov

Perm State University

Author for correspondence.
Email: elhalex@yandex.ru
Russian Federation, Perm

References

  1. Anzum R., Alawamleh K., Bokov D.O. et al. // Food Sci. Tech№l. 2022. V. 42. P. e80721. https://doi.org/10.1590/fst.80721
  2. Mandal S., Lahiri S. // Microchem. J. 2022. V. 175. № 107150. https://doi.org/10.1016/j.microc.2021.107150
  3. Neves H.P., Ferreira G.M., Ferreira G.M. et al. // Sep. Purif. Tech№l. 2022. V. 282. P. 120064. https://doi.org/10.1016/j.seppur.2021.120064
  4. Kojro G., Wroczyński P. // J. Chromatogr. Sci. 2020. V. 58. № 2. P. 151. https://doi.org/10.1093/chromsci/bmz064
  5. Madej K. // TrAC, Trends Anal. Chem. 2009. V. 28. № 4. P. 436. https://doi.org/10.1016/j.trac.2009.02.002
  6. Gniazdowska E., Korytowska N., Kłudka G. et al. // Pharmaceuticals. 2020. V. 13. № 12. P. 458. https://doi.org/10.3390/ph13120458
  7. Liu W., Xie M., Hao X. et al. // Microchem. J. 2021. V. 164. P. 105963. https://doi.org/10.1016/j.microc.2021.105963
  8. Ghaderi E., Amiri A.A. // J. Iran. Chem. Soc. 2021. V. 18. P. 1373. https://doi.org/10.1007/s13738-020-02121-8
  9. Zhong S., Tan S.N., Ge L. et al. // Talanta. 2011. V. 85. № 1. P. 488. https://doi.org/10.1016/j.talanta.2011.04.009
  10. Xie M., Hao X., Jiang X. et al. // J. Sep. Sci. 2021. V. 44. № 12. P. 2457.
  11. https://doi.org/10.1002/jssc.202100088
  12. Zheng H., Hong J., Luo X. et al. // Microchem. J. 2019. V. 145. P. 806. https://doi.org/10.1016/j.microc.2018.11.057
  13. Mahmoud-Nezhad S., Taheri A. // Appl. Na№sci. 2023. V. 13. P. 4613. https://doi.org/10.1007/s13204-023-02759-9
  14. Hamta A., Dehghani M.R. // J. Mol. Liq. 2017. V. 231. P. 20. https://doi.org/10.1016/j.molliq.2017.01.084
  15. Da Rocha Patrício P., Mesquita M.C., da Silva L.H.M et al. // J. Hazard. Mater. 2011. V. 193. P. 311. https://doi.org/10.1016/j.jhazmat.2011.07.062
  16. Леснов А.Е., Головкина А.В., Кудряшова О.С. и др. // Журн. физ. химии. 2016. Т. 90. № 8. С. 1200.
  17. Temel N.K., Gürkan R. // J. Anal. Chem. 2019. V. 74. P. 1174. https://doi.org/10.1134/S1061934819120128
  18. Khudhair A.F., Hassan M.K., Alesaryet H.F. et al. // Indones. J. Chem. 2019. V. 19. № 3. P. 638. https://doi.org/10.22146/ijc.35681
  19. Abou El-Reash Y.G., Tantawy H.A., Abdel-Latif E. et al. // Microchem. J. 2020. V. 158. P. 105280. https://doi.org/10.1016/j.microc.2020.105280
  20. Liang H., Chen Q., Xu C. et al. // Sep. Purif. Tech№l. 2019. V. 210. P. 835. https://doi.org/10.1016/j.seppur.2018.08.071
  21. Станкова А.В., Елохов А.М., Денисова С.А. и др. // Изв. АН. Сер. хим. 2018. Т. 67. №9. С. 1608.
  22. СтанковаА.В., Елохов А.М., Леснов А.Е. // Журн. Сиб. фед. ун-та. Сер. Химия. 2019. Т. 12. № 3. С. 328. https://doi.org/10.17516/1998–2836–0130
  23. СтанковаА.В., Елохов А.М. // Вестник Пермск. ун-та. Сер. Химия. 2019. Т. 9. № 1. С. 50.
  24. Шилыковская Д.О., Денисова С.А., Елохов А.М. // Все материалы. Энциклопедический справочник. 2022. № 14. С. 30.
  25. NezhadaliA., Sadeghi A., RoigarM. // Arabian J. Chem. 2015. V. 8. № 2. P. 164. https://doi.org/10.1016/j.arabjc.2011.02.002
  26. Takeshita Y., Sato Y., Nishi S. // Ind. Eng. Chem. Res.2000. V. 39. № 12. P. 4496. https://doi.org/10.1021/ie000180l
  27. Денисова С.А., Леснов А.Е., Бочарова Е.А. и др. // Вестник Пермск. ун-та. Сер. Химия. 2014. № 3. С. 86.
  28. Mendes I.A., Turel Z.R. // J. Radioanal. Nucl. Chem. 1985. V. 96. № 4. P. 343. https://doi.org/10.1007/bf02163034
  29. Kapadia J., Turel Z.R. // J. Radioanal. Nucl. Chem. 1987. V. 118. № 1. P. 15. https://doi.org/10.1007/bf02165650
  30. Заболотных С.А., Леснов А.Е., Денисова С.А. и др. // Изв. вузов. Химия и хим. технология. 2019. Т. 62. № 7. С. 38.
  31. Ulloa G.R., Coutens C., Sánchez M. et al. // J. Chem. Thermodyn. 2012. V. 47. P. 62. https://doi.org/10.1016/j.jct.2011.09.021
  32. Никурашина Н.И., Мерцлин Р.П. Метод сечений. Применение его к изучению многофазного состояния многокомпонентных систем. Саратов: Изд-во Саратов. ун-та, 1969. 121 c.
  33. Шварценбах Г., Флашка Г. Комплексонометрическое титрование / Пер. с нем. Вайнштейн Ю.И. М.: Химия, 1970. 360 c.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences