Thermal stability of (ZnS)(Ag2S)x heteronanostructures of zinc and silver sulfides
- Authors: Sadovnikov S.I.1, Sergeeva S.V.2, Gusev А.I.1
-
Affiliations:
- Institute of Solid State Chemistry, Ural Branch of the RAS
- Institute of Metallurgy, Ural Branch of the RAS
- Issue: Vol 69, No 5 (2024)
- Pages: 792-800
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://rjonco.com/0044-457X/article/view/666552
- DOI: https://doi.org/10.31857/S0044457X24050192
- EDN: https://elibrary.ru/YEFOLY
- ID: 666552
Cite item
Abstract
Heteronanostructures (ZnS)(Ag2S)x with x from 0.002 to 0.50 were synthesized by hydrochemical coprecipitation. The size of ZnS nanoparticles in the resulting heteronanostructures is 2–4 nm. Annealing of synthesized heteronanostructures (ZnS)(Ag2S)x in air at temperatures from 25 to 530°C or more leads to a change in their phase composition due to the oxidation of cubic zinc sulfide to hexagonal zinc oxide. Oxidation begins at a temperature of ~250°C, and the zinc oxide content in them after annealing at 530°C reaches ~26–30 wt.%. The size of nanoparticles of the resulting ZnO ranges from 12 to 17–25 nm. A study of the oxidation of (ZnS)(Ag2S)x heteronanostructures in air showed that the initial mass loss observed upon heating to ~120°C is due to the removal of adsorbed moisture. The subsequent weight loss that occurs upon heating from ~250 to ~430–450°C is associated with the onset of oxidation of ZnS sulfide and the formation of ZnO oxide. The greatest weight loss is observed upon heating from ~450 to ~580°C and is due to an increase in the ZnO content, partial oxidation of sulfur and its removal in the form of SO2. The oxidation stages are confirmed by the presence of maxima in the temperature dependences of ion currents corresponding to H2O, CO2 and SO2. The studied heteronanostructures are thermally stable when heated to ~200–250°C.
About the authors
S. I. Sadovnikov
Institute of Solid State Chemistry, Ural Branch of the RAS
Author for correspondence.
Email: sadovnikov@ihim.uran.ru
Russian Federation, Ekaterinburg
S. V. Sergeeva
Institute of Metallurgy, Ural Branch of the RAS
Email: sadovnikov@ihim.uran.ru
Russian Federation, Ekaterinburg
А. I. Gusev
Institute of Solid State Chemistry, Ural Branch of the RAS
Email: sadovnikov@ihim.uran.ru
Russian Federation, Ekaterinburg
References
- Fang X., Zhai T., Gautam U.K. et al. // Progr. Mater. Sci. 2011. V. 56. № 2. P. 175. https://doi.org/10.1016/j.pmatsci.2010.10.001
- Wang X., Huang H., Liang B. et al. // Crit. Rev. Solid State Mater. Sci. 2013. V. 38. № 1. P. 57. https://doi.org/10.1080/10408436.2012.736887
- Садовников С.И., Ремпель А.А., Гусев А.И. // Усп. химии. 2018. Т. 87. № 4. С. 303.
- Sadovnikov S.I. // Russ. Chem. Rev. 2019. V. 88. № 6. P. 571. https://doi.org/10.1070/RCR4867
- Liang C.H., Terabe K., Hasegawa T., Aono M. // Nanotechnology. 2007. V. 18. № 48. P. 485202. https://doi.org/10.1088/0957-4484/18/48/485202
- Hasegawa T., Terabe K., Tsuruoka T., Aono M. // Advanc. Mater. 2012. V. 24. № 2. P. 252. https://doi.org/10.1002/adma.201102597
- Yang H.-Y., Zhao Y.-W., Zhang Z.-Y., Xiong H.-M., Yu S.-N. // Nanotechnology. 2013. V. 24. № 5. P. 055706. http://dx.doi.org/10.1088/0957–4484/24/5/055706
- Lim W.P., Zhang Z., Low H.Y., Chin W.S. // Angew. Chem. Int. Ed. 2004. V. 43. № 42. P. 5685. https://doi.org/10.1002/anie.200460566
- Kryukov A.I., Stroyuk A.L., Zin’chuk N.N. et al. // J. Mol. Catal. A: Chem. 2004. V. 221. № 1–2. P. 209. https://doi.org/10.1016/j.molcata.2004.07.009
- Li H., Xie F., Li Wei. et al. // Catal. Surv. Asia. 2018. V. 22. № 3. P. 156. https://doi.org/10.1007/s10563-018-9249-2
- Садовников С.И., Ищенко А.В., Вайнштейн И.А. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1183. https://doi.org/10.31857/S0044457X20090147
- Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1967. 448 с.
- Patnaik P. Dean’s Analytical Chemistry Handbook. New York: McGraw-Hill, 2004. 1280 p.
- Lee P.C., Meisel D. // J. Phys. Chem. 1982. V. 86. № 17. P. 3391. https://doi.org/10.1021/j100214a025
- Sadovnikov S.I., Gusev A.I., Gerasimov E.Yu., Rempel A.A. // Chem. Phys. Lett. 2015. V. 642. P. 17. http://dx.doi.org/10.1016/j.cplett.2015.11.004
- X’Pert HighScore Plus. Version 2.2e (2.2.5). Netherlands.
- Scherrer P. // Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 1918. V. 2. P. 98–100.
- Кривоглаз М. А. Теория рассеяния рентгеновских лучей и тепловых нейтронов реальными кристаллами. М.: Наука, 1967. 336 с.
- Hall W.H. // Proc. Phys. Soc. London. 1949. Sect.A. V. 62. Part 11. № 359A. P. 741. https://doi.org/10.1088/0370-1298/62/11/110
- Williamson G.K., Hall W.H. // Acta Metallurg. 1953. V. 1. № 1. P. 22. https://doi.org/10.1016/0001-6160(53)90006-6
- JCPDS card No. 005-0566
- Van Aswegen J.T.S., Verleger H. // Die Naturwissenschafien. 1960. V. 47. № 6. P. 131. https://doi.org/10.1007/BF00628510
- McMurdie H.F., Morris M.C., Evans E.H. et al. // Powder Diffraction. 1986. V. 1. № 2. P. 64. https://doi.org/10.1017/S0885715600011593
- JCPDS card No. 36-1451
- Xu Y.N., Ching W.Y. // Phys. Rev. B. 1993. V. 48. № 7. P. 4335.и тhttps://doi.org/10.1103/PhysRevB.48.4335
- Blanton T., Misture S., Dontula N., Zdzieszynski Z. // Powder Diffraction. 2011. V. 26. № 2. P. 114. https://doi.org/10.1154/1.3583564
- Corish J., O’Briain C.D. // J. Mater. Sci. 1971. V. 6. № 3. P. 252. https://doi.org/10.1007/BF00550020
- Bärtsch M., Niederberger M. // ChemPlusChem. 2017. V. 82. № 1. P. 42. https://doi.org/10.1002/cplu.201600519
- Sadovnikov S.I. // Mater. Sci. Semicond. Proc. 2022. V. 148. № 10. P. 106766. https://doi.org/10.1016/j.mssp.2022.106766
- NIST Chemistry WebBook. NIST Standard Reference Database Number 69. https://doi.org/10.18434/Т4D303
- Živković D., Sokić M., Živković Ž., Manasijević D., Lj. Balanović L., Štrbac N., Ćosović V., Boyanov B. // J. Therm. Anal. Calorim. 2013. V. 111. № 2. P. 1173. https://doi.org/10.1007/s10973-012-2300-z
- Sadovnikov S.I., Gusev A.I. // J. Therm. Anal. Calorim. 2018. V. 131. № 2. P. 1155. https://doi.org/10.1007/s10973-017-6691-8
- Fu Q.-S., Xue Y.-Q., Cui Z.-X., Wang M.-F. // J. Nanomater. (Hindawi). 2014. V. 2014. P. 856489. https://doi.org/10.1155/2014/856489
- Klyushnikov A.M., Pikalov S.M., Gulyaeva R.I. // Chim. Techno Acta. 2023. V. 10 № 2. P. 202310202. https://doi.org/10.15826/chimtech.2023.10.2.02
- Садовников С.И., Сергеева С.В. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 444. https://doi.org/10.31857/S0044457X22601936
Supplementary files
