Sol-gel synthesis and research of inorganic compounds, hybrid functional materials and disperse systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results are summarised of the Seventh International Conference of CIS countries “Sol-gel synthesis and research of inorganic compounds, hybrid functional materials and disperse systems “Sol-gel 2023”, the key reports are discussed within the scientific sections: Theoretical aspects of sol-gel process; Films, coatings and membranes obtained using sol-gel technology; Hybrid organic-inorganic sol-gel materials; Xerogels, glasses and bulk ceramic materials synthesized by sol-gel method; Nano- and microstructured materials, nanotechnology; Methods of research of structure and properties of materials obtained using sol-gel synthesis.

Full Text

Restricted Access

About the authors

E. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: ep_simonenko@mail.ru
Russian Federation, Moscow, 119991

V. K. Ivanov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
Russian Federation, Moscow, 119991

References

  1. Parashar M., Shukla V.K., Singh R. // J. Mater. Sci. – Mater. Electron. 2020. V. 31. № 5. P. 3729. https://doi.org/10.1007/s10854-020-02994-8
  2. Gorobtsov F.Y., Grigoryeva M.K., Simonenko T.L. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1706. https://doi.org/10.1134/S0036023622601131
  3. Lermontov S.A., Baranchikov A.E., Sipyagina N.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 2. P. 255. https://doi.org/10.1134/S0036023620020084
  4. Shilova O.A., Panova G.G., Mjakin V.S. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 5. P. 765. https://doi.org/10.1134/S0036023621050181
  5. Rashid A. Bin, Shishir S.I., Mahfuz M.A. et al. // Part. Syst. Charact. 2023. V. 40. № 6. https://doi.org/10.1002/ppsc.202200186
  6. Danks A.E., Hall S.R., Schnepp Z. // Mater. Horizons. 2016. V. 3. № 2. P. 91. https://doi.org/10.1039/C5MH00260E
  7. Pant B., Park M., Park S.-J. // Coatings. 2019. V. 9. № 10. P. 613. https://doi.org/10.3390/coatings9100613
  8. Mjakin S.V., Nikolaev A.M., Khamova T.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 626. https://doi.org/10.1134/S0036023620040129
  9. Simonenko T.L., Simonenko N.P., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 14. P. 2045. https://doi.org/10.1134/S0036023621140138
  10. Mokrushin A.S., Gorban Y.M., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 4. P. 594. https://doi.org/10.1134/S0036023621040173
  11. Agafonov A.V., Grishina E.P. // Russ. J. Inorg. Chem. 2019. V. 64. № 13. P. 1641. https://doi.org/10.1134/S0036023619130023
  12. Rex A., dos Santos J.H.Z. // J. Sol-Gel Sci. Technol. 2023. V. 105. № 1. P. 30. https://doi.org/10.1007/s10971-022-05975-x
  13. Mohammadi M., Khodamorady M., Tahmasbi B. et al. // J. Ind. Eng. Chem. 2021. V. 97. P. 1. https://doi.org/10.1016/j.jiec.2021.02.001
  14. Nisticò R., Scalarone D., Magnacca G. // Microporous Mesoporous Mater. 2017. V. 248. P. 18. https://doi.org/10.1016/j.micromeso.2017.04.017
  15. Papynov E.K., Shichalin O.O., Buravlev I.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 2. P. 263. https://doi.org/10.1134/S0036023620020138
  16. Kaur H., Kaushal S., Kumar S. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 12. P. 1862. https://doi.org/10.1134/S0036023620120062
  17. Shehata M.M., Youssef W.M., Mahmoud H.H. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 2. P. 279. https://doi.org/10.1134/S0036023620020163
  18. Parale V.G., Lee K.-Y., Park H.-H. // J. Korean Ceram. Soc. 2017. V. 54. № 3. P. 184. https://doi.org/10.4191/kcers.2017.54.3.12
  19. Polevoi L.A., Kolesnik I.V., Kopitsa G.P. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 12. P. 1848. https://doi.org/10.1134/S0036023623602209
  20. Baranchikov A.E., Kopitsa G.P., Yorov K.E. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 874. https://doi.org/10.1134/S003602362106005X
  21. Rechberger F., Niederberger M. // Nanoscale Horizons. 2017. V. 2. № 1. P. 6. https://doi.org/10.1039/C6NH00077K
  22. Lermontov S.A., Straumal E.A., Mazilkin A.A. et al. // J. Phys. Chem. C. 2016. V. 120. № 6. P. 3319. https://doi.org/10.1021/acs.jpcc.5b10461
  23. Song X., Segura-Egea J.J., Díaz-Cuenca A. // Molecules. 2023. V. 28. № 19. P. 6967. https://doi.org/10.3390/molecules28196967
  24. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 12. P. 1887. https://doi.org/10.1134/S0036023621120172
  25. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 5. P. 747. https://doi.org/10.1134/S003602362105020X
  26. Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 10. P. 1596. https://doi.org/10.1134/S0036023620100198
  27. Simonenko E.P., Simonenko N.P., Nikolaev V.A. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 11. https://doi.org/10.1134/S0036023619110202
  28. Lei Q., Guo J., Noureddine A. et al. // Adv. Funct. Mater. 2020. V. 30. № 41. P. 1909539. https://doi.org/10.1002/adfm.201909539
  29. Kaur G., Pickrell G., Sriranganathan N. et al. // J. Biomed. Mater. Res., Part B: Appl. Biomater. 2016. V. 104. № 6. P. 1248. https://doi.org/10.1002/jbm.b.33443
  30. Baino F., Fiume E., Miola M. et al. // Int. J. Appl. Ceram. Technol. 2018. V. 15. № 4. P. 841. https://doi.org/10.1111/ijac.12873
  31. Deshmukh K., Kovářík T., Křenek T. et al. // RSC Adv. 2020. V. 10. № 56. P. 33782. https://doi.org/10.1039/D0RA04287K
  32. Amiri S., Rahimi A. // Iran. Polym. J. 2016. V. 25. № 6. P. 559. https://doi.org/10.1007/s13726-016-0440-x
  33. Simonenko N.P., Nikolaev V.A., Simonenko E.P. et al. // Russ. J. Inorg. Chem. 2016. V. 61. № 12. P. 1505. https://doi.org/10.1134/S0036023616120184
  34. Mahltig B., Leisegang T., Jakubik M. et al. // J. Sol-Gel Sci. Technol. 2023. V. 107. № 1. P. 20. https://doi.org/10.1007/s10971-021-05558-2
  35. Figueira R.B., Silva C.J.R., Pereira E.V. // J. Coatings Technol. Res. 2015. V. 12. № 1. P. 1. https://doi.org/10.1007/s11998-014-9595-6
  36. Maleki H. // Chem. Eng. J. 2016. V. 300. P. 98. https://doi.org/10.1016/j.cej.2016.04.098
  37. Sumida K., Liang K., Reboul J. et al. // Chem. Mater. 2017. V. 29. № 7. P. 2626. https://doi.org/10.1021/acs.chemmater.6b03934
  38. Kim Y.H., Lee I., Lee H. et al. // J. Sol-Gel Sci. Technol. 2023. V. 107. № 1. P. 32. https://doi.org/10.1007/s10971-021-05491-4
  39. Feinle A., Elsaesser M.S., Hüsing N. // Chem. Soc. Rev. 2016. V. 45. № 12. P. 3377. https://doi.org/10.1039/C5CS00710K

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Sections of the Chemical Abstracts classifier, which include recent review works on sol-gel processes (since 2015), according to CAS SciFindern, January 2024.

Download (526KB)
3. Fig. 2. Participants of the Seventh International Conference of the CIS countries “Sol-gel synthesis and research of inorganic compounds, hybrid functional materials and dispersed systems “Sol-gel 2023".

Download (410KB)

Copyright (c) 2024 Russian Academy of Sciences