CO OXIDATION CATALYSTS BASED ON COMPLEX ANTIMONATES OF THE La2O3-СoO-Sb2O5 SYSTEMS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Single-phase samples of compounds crystalized in the La2O3-CoO-Sb2O5 system have beensynthesized by several methods. Catalytic properties of these samples were studied in the COoxidation reaction. It was found that the LaCo1/3Sb5/3O6 catalyst with a rosiaite structuresynthesized by coprecipitation with hydrothermal treatment of sediment and subsequent annealinghas the largest activity at low temperatures and stability during cyclic tests. This catalyst providesthe 90% CO conversion at 265∘C. The surface of LaCo1/3Sb5/3O6 was studied using XPS, TPD O2 and IR spectroscopy. It is shown that the CO catalytic oxidation proceeds according to the Langmuir-Hinshelwood mechanism and is accompanied by Co3+↔Co2+ and Sb3+↔Sb5+ redoxprocesses with the participation of surfactants and oxygen vacancies. At the same time, antimonyions in this process act as an electron donors, the increasing concentration of which promotes theadsorption and formation of active oxygen species on the surface. The absence of contaminationof the surface during the catalytic process has been established, which eliminates the need for itsregeneration.

About the authors

A. V. Egorysheva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: anna_egorysheva@rambler.ru
Moscow, Russia

S. V. Golodukhina

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

L. S. Razvorotneva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National Research University Higher School of Economics

Moscow, Russia; Moscow, Russia

E. Yu. Liberman

Mendeleev University of Chemical Technology of Russia

Moscow, Russia

A. V. Chistyakov

Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences

Moscow, Russia

A. V. Naumkin

Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Moscow, Russia

O. G. Ellert

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

References

  1. Royer S., Duprez D. // ChemCatChem. 2011. V. 3. P. 24. https://doi.org/10.1002/cctc.201000378
  2. Royer S., Duprez D., Can F. et al. // Chem Rev. 2014. V. 114. P. 10292. https://doi.org/10.1021/cr500032a
  3. Egorysheva A.V., Ellert O.G., Liberman E.Yu. et al. // J. Alloys Compd. 2019. V. 777. P. 655. https://doi.org/10.1016/j.jallcom.2018.11.008
  4. Ellert O.G., Egorysheva A.V., Liberman E.Yu. et al. // Ceram. Int. 2020. V. 46. P. 27725. https://doi.org/10.1016/j.ceramint.2020.07.271
  5. Эллерт О.Г., Егорышева А.В., Либерман Е.Ю. и др. // Неорган. материалы. 2019. Т. 55. № 12. С. 1335. https://doi.org/10.1134/S0002337X19120030
  6. Егорышева А.В., Голодухина С.В., Плукчи К.Р. и др. // Журн. неорган. химии. 2023. Т. 68. № 12. C. 1702. https://doi.org/10.31857/S0044457X23601220
  7. Голодухина С.В., Разворотнева Л.С., Егорышева А.В. и др. // Докл. РАН. Химия, науки о материалах. 2021. Т. 500.№1. С. 29. https://doi.org/10.31857/S268695352105006X
  8. Blasse G., De Pauw A.D.M. // J. Inorg. Nucl. Chem. 1970. V. 32.№8. P. 2533. https://doi.org/10.1016/0022-1902(70)80298-6
  9. Li K., Hu Y., Wang Y. et al. // J. Solid State Chem. 2014. V. 217. P. 80. https://doi.org/10.1016/j.jssc.2014.05.003
  10. Franco D.G., Fuertes V.C., Blanco M.C. et al. // J. Solid State Chem. 2012. V. 194. P. 385. https://doi.org/10.1016/j.jssc.2012.05.045
  11. Егорышева А.В., Голодухина С.В., Плукчи К.Р. и др. // Журн. неорган. химии. 2024. Т. 69. № 8. В печати
  12. Li J.-G., Buchel R., Isobe M. et al. // J. Phys. Chem. C. 2009. V. 113. P. 8009. https://doi.org/10.1021/jp8080047
  13. Jeong B.-S., Heo Y.W., Norton D.P. et al. // Appl. Phys. Lett. 2004. V. 84. P. 2608. https://doi.org/10.1063/1.1691499
  14. Riva R., Miessner H., Vitali R., Del Piero G. // Appl. Catal., A: Gen. 2000. V. 196. P. 111. https://doi.org/10.1016/S0926-860X(99)00460-3
  15. Mathew T. // J. Catal. 2002. V. 210. P. 405. https://doi.org/10.1006/jcat.2002.3712
  16. Towle S.N., Bargar J.R. // J. Colloid Interface Sci. 1997. V. 187. P. 62. https://doi.org/10.1006/jcis.1996.4539
  17. Anantharamaiah P.N., Joy P.A. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 10516. https://doi.org/10.1039/C6CP00369A
  18. Birchall T., Connor J.A., Hillier L.H. // J. Chem. Soc., Dalton Trans. 1975. V. 20. P. 2003. https://doi.org/10.1039/dt9750002003
  19. Carlson T.A. Auger electron spectroscopy // Photoelectron Auger Spectroscopy. Boston: Springer US, 1975. P. 279. https://doi.org/10.1007/978-1-4757-0118-0_6
  20. Garbassi F. // Surf. Interface Anal. 1980. V. 2. P. 165. https://doi.org/10.1002/sia.740020502
  21. Teterin Yu.A., Teterin A.Yu., Utkin I.O., Ryzhkov M.V. // J. Electron Spectros. Relat. Phenom. 2004. V. 137–140. P. 601. https://doi.org/10.1016/j.elspec.2004.02.014
  22. Che M. // Adv. Catal. 1983. V. 32. P. 1. https://doi.org/10.1016/S0360-0564(08)60439-3
  23. Yamazoe N., Fuchigami J., Kishikawa M., Seiyama T. // Surf. Sci. 1979. V. 86. P. 335. https://doi.org/10.1016/0039-6028(79)90411-4
  24. Little L.H. Infrared Spectra of Adsorbed Species. London: Academic Press, 1966. Р. 428.
  25. Li C., Domen K., Maruya K., Onishi T. // J. Chem. Soc. Chem. Commun. 1988. P. 1541. https://doi.org/10.1039/C39880001541
  26. Li Z., Xu G., Hoflund G.B. // Fuel Process Technol. 2003. V. 84. P. 1. https://doi.org/10.1016/S0378-3820(02)00099-1
  27. Tsyganenko A.A., Rodionova T.A., Filimonov V.N. // React. Kinet. Catal. Lett. 1979. V. 11. P. 113. https://doi.org/10.1007/BF02074196
  28. Zecchina A., Spoto G., Coluccia S. // J. Mol. Catal. 1982. V. 14. P. 351. https://doi.org/10.1016/0304-5102(82)80095-3
  29. Al-Mashta F., Sheppard N., Lorenzelli V., Busca G. // J. Chem. Soc., Faraday Trans. 1. 1982. V. 78. P. 979. https://doi.org/10.1039/F19827800979
  30. Campbell С.T., Ertl G., Kuipers H., Segner J. // J. Chem. Phys. 1980. V. 73. P. 5862. https://doi.org/10.1039/F19827800979
  31. Carrazan S.R.G., Cadus L., Dieu P. et al. // Catal. Today. 1996. V. 32. P. 311. https://doi.org/10.1016/S0920-5861(96)00184-8

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences