Polyol synthesis of silver nanowires and their application for transparent electrodes fabrication

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Polyol synthesis of thin silver nanowires has been studied and their suitability for the formation of transparent electrodes has been shown. The influence of stepwise heating of the reaction system on the position and shape of the absorption band associated with the surface plasmon resonance of the formed silver nanostructures has been determined. Using X-ray diffraction analysis it was found that the material does not contain crystalline impurities and has a face-centered cubic lattice. According to the scanning and transmission electron microscopy data, the main fraction is represented by elongated nanostructures with 10–15 μm length (however, there are also structures with length up to 20 μm) characteristic for silver nanowires of arc-shaped type. It is shown that the Ag nanowires obtained are quite thin (diameter is about 35–45 nm). Also in the composition of the material some amount of microrods of 1–3 µm length is observed, the diameter of which grows from 70 to 150 nm with decreasing length. In smaller quantities there is also an admixture of zero-dimensional particles, which are polyhedrons of various complexity. Atomic force microscopy has been used to study the surface of the film based on the obtained silver nanowires and the diameter of individual nanowire has been estimated. The optical properties and surface resistivity of the films based on the obtained silver nanowires were examined. It was found that the increase in transmittance at 550 nm from 73.9 to 90.3% is accompanied by an increase in the resistance value from 25 to 146 Ω/sq.

Full Text

Restricted Access

About the authors

N. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991

Т. L. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991

Ph. Yu. Gorobtsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991

P. V. Arsenov

Moscow Institute of Physics and Technology (National Research University)

Email: n_simonenko@mail.ru
Russian Federation, Dolgoprudny, Moscow Region, 141701

I. A. Volkov

Moscow Institute of Physics and Technology (National Research University)

Email: n_simonenko@mail.ru
Russian Federation, Dolgoprudny, Moscow Region, 141701

Е. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991

References

  1. Shukla D., Liu Y., Zhu Y. // Nanoscale. 2023. V. 15. № 6. P. 2767. https://doi.org/10.1039/D2NR05840E
  2. Zhang L., Song T., Shi L. et al. // J. Nanostructure Chem. 2021. V. 11. № 3. P. 323. https://doi.org/10.1007/s40097-021-00436-3
  3. Yang J., Yu F., Chen A. et al. // Adv. Powder Mater. 2022. V. 1. № 4. P. 100045. https://doi.org/10.1016/j.apmate.2022.100045
  4. Shen J.-J. // Synth. Met. 2021. V. 271. P. 116582. https://doi.org/10.1016/j.synthmet.2020.116582
  5. Zhao W., Jiang M., Wang W. et al. // Adv. Funct. Mater. 2021. V. 31. № 11. https://doi.org/10.1002/adfm.202009136
  6. Kiruthika S., Sneha N., Gupta R. // J. Mater. Chem. A. 2023. V. 11. № 10. P. 4907. https://doi.org/10.1039/D2TA07836H
  7. Huang L., Chen X., Wu X. et al. // Flex. Print. Electron. 2023. V. 8. № 2. P. 025021. https://doi.org/10.1088/2058-8585/acdb84
  8. Lee J., Lee Y., Ahn J. et al. // J. Mater. Chem. С. 2017. V. 5. № 48. P. 12800. https://doi.org/10.1039/C7TC04840H
  9. Wang Y., Kong J., Xue R. et al. // Nano Res. 2023. V. 16. № 1. P. 1558. https://doi.org/10.1007/s12274-022-4757-9
  10. Oh D.E., Lee C.-S., Kim T.W. et al. // Biosensors. 2023. V. 13. № 7. P. 704. https://doi.org/10.3390/bios13070704
  11. Jang J., Kim J., Shin H. et al. // Sci. Adv. 2021. V. 7. № 14. https://doi.org/10.1126/sciadv.abf7194
  12. Nguyen V.H., Papanastasiou D.T., Resende J. et al. // Small. 2022. V. 18. № 19. https://doi.org/10.1002/smll.202106006
  13. Elsokary A., Soliman M., Abulfotuh F. et al. // Sci. Rep. 2024. V. 14. № 1. P. 3045. https://doi.org/10.1038/s41598-024-53286-8
  14. Kumar D., Stoichkov V., Brousseau E. et al. // Nanoscale. 2019. V. 11. № 12. P. 5760. https://doi.org/10.1039/C8NR07974A
  15. Fan Z., Wang J., He L. et al. // Langmuir. 2023. V. 39. № 30. P. 10651. https://doi.org/10.1021/acs.langmuir.3c01264
  16. Preston C., Fang Z., Murray J. et al. // J. Mater. Chem. С. 2014. V. 2. № 7. P. 1248. https://doi.org/10.1039/C3TC31726A
  17. Zhu Y., Deng Y., Yi P. et al. // Adv. Mater. Technol. 2019. V. 4. № 10. https://doi.org/10.1002/admt.201900413
  18. Liao Q., Hou W., Zhang J. et al. // Coatings. 2022. V. 12. № 11. P. 1756. https://doi.org/10.3390/coatings12111756
  19. Shi L. // Micro Nano Lett. 2023. V. 18. № 1. https://doi.org/10.1049/mna2.12151
  20. Hemmati S., Harris M.T., Barkey D.P. // J. Nanomater. 2020. V. 2020. P. 1. https://doi.org/10.1155/2020/9341983
  21. Duan X., Ding Y., Liu R. // Mater. Today Energy. 2023. V. 37. P. 101409. https://doi.org/10.1016/j.mtener.2023.101409
  22. Wang Y.H., Yang X., Du D.X. et al. // J. Mater. Sci. Mater. Electron. 2019. V. 30. № 14. P. 13238. https://doi.org/10.1007/s10854-019-01687-1
  23. Fahad S., Yu H., Wang L. et al. // J. Mater. Sci. 2019. V. 54. № 2. P. 997. https://doi.org/10.1007/s10853-018-2994-9
  24. Fiévet F., Ammar-Merah S., Brayner R. et al. // Chem. Soc. Rev. 2018. V. 47. № 14. P. 5187. https://doi.org/10.1039/C7CS00777A
  25. Zhang P., Wyman I., Hu J. et al. // Mater. Sci. Eng., B. 2017. V. 223. P. 1. https://doi.org/10.1016/j.mseb.2017.05.002
  26. Araki T., Jiu J., Nogi M. et al. // Nano Res. 2014. V. 7. № 2. P. 236. https://doi.org/10.1007/s12274-013-0391-x
  27. Bergin S.M., Chen Y.-H., Rathmell A.R. et al. // Nanoscale. 2012. V. 4. № 6. P. 1996. https://doi.org/10.1039/c2nr30126a
  28. Coskun S., Aksoy B., Unalan H.E. // Cryst. Growth Des. 2011. V. 11. № 11. P. 4963. https://doi.org/10.1021/cg200874g
  29. Sun Y., Gates B., Mayers B. et al. // Nano Lett. 2002. V. 2. № 2. P. 165. https://doi.org/10.1021/nl010093y
  30. Basarir F., De S., Daghigh Shirazi H. et al. // Nanoscale Adv. 2022. V. 4. № 20. P. 4410. https://doi.org/10.1039/D2NA00560C
  31. Kaili Z., Yongguo D., Shimin C. // J. Nanosci. Nanotechnol. 2016. V. 16. № 1. P. 480. https://doi.org/10.1166/jnn.2016.12158
  32. Lai X., Feng X., Zhang M. et al. // J. Nanoparticle Res. 2014. V. 16. № 3. P. 2272. https://doi.org/10.1007/s11051-014-2272-y
  33. Jiu J., Araki T., Wang J. et al. // J. Mater. Chem. A. 2014. V. 2. № 18. P. 6326. https://doi.org/10.1039/C4TA00502C
  34. Mao H., Feng J., Ma X. et al. // J. Nanoparticle Res. 2012. V. 14. № 6. P. 887. https://doi.org/10.1007/s11051-012-0887-4
  35. Lee E.-J., Chang M.-H., Kim Y.-S. et al. // APL Mater. 2013. V. 1. № 4. P. 042118. https://doi.org/10.1063/1.4826154
  36. Ha H., Amicucci C., Matteini P. et al. // Colloid Interface Sci. Commun. 2022. V. 50. P. 100663. https://doi.org/10.1016/j.colcom.2022.100663

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. UV-Vis absorption spectra of the reaction system after its stepwise heat treatment for 30 min at different temperatures (a) and an X-ray diffraction pattern of the film based on the formed silver nanowires (b)

Download (149KB)
3. Fig. 2. Microstructure of the obtained silver nanowires (according to SEM data)

Download (996KB)
4. Fig. 3. Microstructure of the obtained silver nanowires (according to TEM data)

Download (712KB)
5. Fig. 4. Microstructure of the obtained silver nanowires (according to AFM data) (a–c) and the cross-sectional profile (highlighted by a white line in the corresponding topographic image) for a single nanowire (d)

Download (439KB)
6. Fig. 5. UV-Vis transmission spectra for the glass substrate and films based on the obtained silver nanowires (after subtracting the signal from the substrate) (a) and the dependence of the film transmission at 550 nm on the surface resistance (b)

Download (135KB)

Copyright (c) 2024 Russian Academy of Sciences