Polyol synthesis of silver nanowires and their application for transparent electrodes fabrication
- Authors: Simonenko N.P.1, Simonenko Т.L.1, Gorobtsov P.Y.1, Arsenov P.V.2, Volkov I.A.2, Simonenko Е.P.1
-
Affiliations:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- Issue: Vol 69, No 9 (2024)
- Pages: 1223-1232
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://rjonco.com/0044-457X/article/view/676607
- DOI: https://doi.org/10.31857/S0044457X24090023
- EDN: https://elibrary.ru/JTCUOC
- ID: 676607
Cite item
Abstract
Polyol synthesis of thin silver nanowires has been studied and their suitability for the formation of transparent electrodes has been shown. The influence of stepwise heating of the reaction system on the position and shape of the absorption band associated with the surface plasmon resonance of the formed silver nanostructures has been determined. Using X-ray diffraction analysis it was found that the material does not contain crystalline impurities and has a face-centered cubic lattice. According to the scanning and transmission electron microscopy data, the main fraction is represented by elongated nanostructures with 10–15 μm length (however, there are also structures with length up to 20 μm) characteristic for silver nanowires of arc-shaped type. It is shown that the Ag nanowires obtained are quite thin (diameter is about 35–45 nm). Also in the composition of the material some amount of microrods of 1–3 µm length is observed, the diameter of which grows from 70 to 150 nm with decreasing length. In smaller quantities there is also an admixture of zero-dimensional particles, which are polyhedrons of various complexity. Atomic force microscopy has been used to study the surface of the film based on the obtained silver nanowires and the diameter of individual nanowire has been estimated. The optical properties and surface resistivity of the films based on the obtained silver nanowires were examined. It was found that the increase in transmittance at 550 nm from 73.9 to 90.3% is accompanied by an increase in the resistance value from 25 to 146 Ω/sq.
Full Text

About the authors
N. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991
Т. L. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991
Ph. Yu. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991
P. V. Arsenov
Moscow Institute of Physics and Technology (National Research University)
Email: n_simonenko@mail.ru
Russian Federation, Dolgoprudny, Moscow Region, 141701
I. A. Volkov
Moscow Institute of Physics and Technology (National Research University)
Email: n_simonenko@mail.ru
Russian Federation, Dolgoprudny, Moscow Region, 141701
Е. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: n_simonenko@mail.ru
Russian Federation, Moscow, 119991
References
- Shukla D., Liu Y., Zhu Y. // Nanoscale. 2023. V. 15. № 6. P. 2767. https://doi.org/10.1039/D2NR05840E
- Zhang L., Song T., Shi L. et al. // J. Nanostructure Chem. 2021. V. 11. № 3. P. 323. https://doi.org/10.1007/s40097-021-00436-3
- Yang J., Yu F., Chen A. et al. // Adv. Powder Mater. 2022. V. 1. № 4. P. 100045. https://doi.org/10.1016/j.apmate.2022.100045
- Shen J.-J. // Synth. Met. 2021. V. 271. P. 116582. https://doi.org/10.1016/j.synthmet.2020.116582
- Zhao W., Jiang M., Wang W. et al. // Adv. Funct. Mater. 2021. V. 31. № 11. https://doi.org/10.1002/adfm.202009136
- Kiruthika S., Sneha N., Gupta R. // J. Mater. Chem. A. 2023. V. 11. № 10. P. 4907. https://doi.org/10.1039/D2TA07836H
- Huang L., Chen X., Wu X. et al. // Flex. Print. Electron. 2023. V. 8. № 2. P. 025021. https://doi.org/10.1088/2058-8585/acdb84
- Lee J., Lee Y., Ahn J. et al. // J. Mater. Chem. С. 2017. V. 5. № 48. P. 12800. https://doi.org/10.1039/C7TC04840H
- Wang Y., Kong J., Xue R. et al. // Nano Res. 2023. V. 16. № 1. P. 1558. https://doi.org/10.1007/s12274-022-4757-9
- Oh D.E., Lee C.-S., Kim T.W. et al. // Biosensors. 2023. V. 13. № 7. P. 704. https://doi.org/10.3390/bios13070704
- Jang J., Kim J., Shin H. et al. // Sci. Adv. 2021. V. 7. № 14. https://doi.org/10.1126/sciadv.abf7194
- Nguyen V.H., Papanastasiou D.T., Resende J. et al. // Small. 2022. V. 18. № 19. https://doi.org/10.1002/smll.202106006
- Elsokary A., Soliman M., Abulfotuh F. et al. // Sci. Rep. 2024. V. 14. № 1. P. 3045. https://doi.org/10.1038/s41598-024-53286-8
- Kumar D., Stoichkov V., Brousseau E. et al. // Nanoscale. 2019. V. 11. № 12. P. 5760. https://doi.org/10.1039/C8NR07974A
- Fan Z., Wang J., He L. et al. // Langmuir. 2023. V. 39. № 30. P. 10651. https://doi.org/10.1021/acs.langmuir.3c01264
- Preston C., Fang Z., Murray J. et al. // J. Mater. Chem. С. 2014. V. 2. № 7. P. 1248. https://doi.org/10.1039/C3TC31726A
- Zhu Y., Deng Y., Yi P. et al. // Adv. Mater. Technol. 2019. V. 4. № 10. https://doi.org/10.1002/admt.201900413
- Liao Q., Hou W., Zhang J. et al. // Coatings. 2022. V. 12. № 11. P. 1756. https://doi.org/10.3390/coatings12111756
- Shi L. // Micro Nano Lett. 2023. V. 18. № 1. https://doi.org/10.1049/mna2.12151
- Hemmati S., Harris M.T., Barkey D.P. // J. Nanomater. 2020. V. 2020. P. 1. https://doi.org/10.1155/2020/9341983
- Duan X., Ding Y., Liu R. // Mater. Today Energy. 2023. V. 37. P. 101409. https://doi.org/10.1016/j.mtener.2023.101409
- Wang Y.H., Yang X., Du D.X. et al. // J. Mater. Sci. Mater. Electron. 2019. V. 30. № 14. P. 13238. https://doi.org/10.1007/s10854-019-01687-1
- Fahad S., Yu H., Wang L. et al. // J. Mater. Sci. 2019. V. 54. № 2. P. 997. https://doi.org/10.1007/s10853-018-2994-9
- Fiévet F., Ammar-Merah S., Brayner R. et al. // Chem. Soc. Rev. 2018. V. 47. № 14. P. 5187. https://doi.org/10.1039/C7CS00777A
- Zhang P., Wyman I., Hu J. et al. // Mater. Sci. Eng., B. 2017. V. 223. P. 1. https://doi.org/10.1016/j.mseb.2017.05.002
- Araki T., Jiu J., Nogi M. et al. // Nano Res. 2014. V. 7. № 2. P. 236. https://doi.org/10.1007/s12274-013-0391-x
- Bergin S.M., Chen Y.-H., Rathmell A.R. et al. // Nanoscale. 2012. V. 4. № 6. P. 1996. https://doi.org/10.1039/c2nr30126a
- Coskun S., Aksoy B., Unalan H.E. // Cryst. Growth Des. 2011. V. 11. № 11. P. 4963. https://doi.org/10.1021/cg200874g
- Sun Y., Gates B., Mayers B. et al. // Nano Lett. 2002. V. 2. № 2. P. 165. https://doi.org/10.1021/nl010093y
- Basarir F., De S., Daghigh Shirazi H. et al. // Nanoscale Adv. 2022. V. 4. № 20. P. 4410. https://doi.org/10.1039/D2NA00560C
- Kaili Z., Yongguo D., Shimin C. // J. Nanosci. Nanotechnol. 2016. V. 16. № 1. P. 480. https://doi.org/10.1166/jnn.2016.12158
- Lai X., Feng X., Zhang M. et al. // J. Nanoparticle Res. 2014. V. 16. № 3. P. 2272. https://doi.org/10.1007/s11051-014-2272-y
- Jiu J., Araki T., Wang J. et al. // J. Mater. Chem. A. 2014. V. 2. № 18. P. 6326. https://doi.org/10.1039/C4TA00502C
- Mao H., Feng J., Ma X. et al. // J. Nanoparticle Res. 2012. V. 14. № 6. P. 887. https://doi.org/10.1007/s11051-012-0887-4
- Lee E.-J., Chang M.-H., Kim Y.-S. et al. // APL Mater. 2013. V. 1. № 4. P. 042118. https://doi.org/10.1063/1.4826154
- Ha H., Amicucci C., Matteini P. et al. // Colloid Interface Sci. Commun. 2022. V. 50. P. 100663. https://doi.org/10.1016/j.colcom.2022.100663
Supplementary files
