SYNTHESIS AND THERMODYNAMIC PROPERTIES OF ERBIUM TITANATE
- Authors: Guskov A.V.1, Gagarin P.G.1, Guskov V.N.1, Gavrichev K.S.1
-
Affiliations:
- Kurnakov Institute General and Inorganic Chemistry of the Russian Academy of Sciences
- Issue: Vol 69, No 11 (2024)
- Pages: 2235-2250
- Section: ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ
- URL: https://rjonco.com/0044-457X/article/view/676617
- DOI: https://doi.org/10.31857/S0044457X24110083
- EDN: https://elibrary.ru/JKWZNG
- ID: 676617
Cite item
Abstract
Erbium titanate was synthesized by co-precipitation of erbium and titanium hydroxides followed by high-temperature annealing. The temperature intervals of the sequence of formation of pyrochlore-type crystal structure were determined. Measurements of the isobaric heat capacity of erbium titanate in the range of 2-1870 K were carried out by relaxation, adiabatic and differential scanning calorimetry methods. On the basis of smoothed values of heat capacity, entropy and enthalpy increment in the region 0-1900 K were calculated, the contribution of Schottky anomaly at temperatures up to 300 K was evaluated, and the Gibbs energy of erbium titanate formation at 298.15 K was calculated.
About the authors
A. V. Guskov
Kurnakov Institute General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
P. G. Gagarin
Kurnakov Institute General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
V. N. Guskov
Kurnakov Institute General and Inorganic Chemistry of the Russian Academy of Sciences
Email: guskov@igic.ras.ru
Moscow, Russia
K. S. Gavrichev
Kurnakov Institute General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
References
- Тимофеев Н.И., Салибеков Г.Е., Романович И.В. // Изв. АН СССР. Неорган. материалы. 1971. Т. 7. С. 890.
- Brixner L.H. // Inorg. Chem. 1964. V. 3. P. 1065.
- Щербакова Л.Г., Мамсурова Л.Г., Суханова Г.Е. // Успехи химии. 1979. Т. 48. С. 423.
- Комиссарова Л.Н., Шацкий В.М., Пушкина Г.Я. и др. // Соединения редкоземельных элементов. Карбонаты, оксалаты, нитраты, титанаты. М.: Наука, 1984. 235 с.
- Li Q.J., Xu L.M., Fan C. et al. // J. Cryst. Growth. V. 377. P. 96. https://doi.org/10.1016/ j.jcrysgro.2013.04.048
- Vlaskova K., Proschek P., Pospsil J., Klicpera M. // J. Cryst. Growth. 2020. V. 546. P. 125783. https://doi.org/10.1016/j.jcrysgro.2020.125783
- Ершова Л.М., Игнатьев Б.В., Кусалова Л.И. и др. // Изв. АН СССР. Неорган. материалы. 1977. Т. 13. С. 2042.
- Farmer J.M., Boather L.A., Chakoumakos B.C. et al. // J. Alloys Compd. 2014. V. 605. P. 63. https://doi.org/10.1016./j.jallcom.2014.03.153
- Blote H.W.J., Wielinga R.F., Huiskamp W.J. // Physica. 1969. V. 43. P. 549. https://doi.org/10.1016/ 0031-8914(69)90187-6
- Greedan J.E. // J. Alloys Compd. 2006. V. 408–412. P. 444. https://doi.org/10.1016./ j.jallcom.2004.12.084
- Ben Amor N., Bejar M., Hussein M. et al. // J. Supercond. Nov. Magn. 2012. V. 25. P. 035. https://doi.org/10.1007/s10948-011-1344-9
- Champion J.D.M., Harris M.J., Holdsworth P.C.W. et al. // Phys. Rev. B. 2003. V. 68. P. 020401. https://doi.org/10.1103/physrevb.68.020401
- Bonville P., Petit S., Mirebeau I. et al. // J. Phys.: Condens. Matter. 2013. V. 25. P. 275601. https://doi.org/10.1088/0953-8984/25/27/275601
- Oitmaa J., Singh R.R.P., Javanparast B. et al. // Phys. Rev. B. 2013. V. 88. P. 220404. https://doi.org/10.1103/PhysRevB.88.220404
- Dalmas de Reotier P., Yaouanc A., Chapuis Y. et al. // Phys. Rev. B. 2012. V. 86. P. 104424. https://doi.org/10.1103/physrevb.86.104424
- Ruff J.P.C., Clancy J.P., While M.A. et al. // Phys. Rev. Lett. 2008. V. 101. P. 147205. https://doi.org/10.1103/PhysRevLett.101.147205
- Wolf B., Tusch U., Dorschug S. et al. // J. Appl. Phys. 2016. V. 120№14. P. 142112. https://doi.org/10.1063/1.4961708
- Zhang L., Zhang W., Zhu J. et al. // J. Alloys Compd. 2009. V. 480. P. L45. https://doi.org/10.1016/j.jallcom.2009.02.146
- Lumpkin G.R. // J. Nucl. Mater. 2001. V. 289. P. 136.
- Weber W.J., Ewing R.C. // Science. 2000. V. 289. №5487. P. 2051. https://doi.org/10.1126/science.289.5487.205
- Teng Z., Tan Y., Zeng S. et al. // J. Eur. Ceram Soc. 2021. V. 41. P. 3614. https://doi.org/10.1016/jeurceramoc.202101.013
- Guo H., Zhang K., Li Y. // Ceram. Int. 2024. V. 50. P. 21859. https://doi.org/10.1016/j.ceramint.2024.03298
- Popov V.V., Menushenkov A.P., Yastrebtsev A.A. et al. // Ceram. Int. 2024. V. 50. P. 5319. https://doi.org/10.1016/j.ceramint.2023.11.283
- Chung C.-K., O’Quinn, NeuefeindJ.C. et al. // Acta Mater. 2019. V. 181. P. 309. https://doi.org/j.actamat.2019.09.022
- Helean K.B., Ushakov S.V., Brown C.E. et al. // J. Solid State Chem. 2004. V. 177. P. 1858. https://doi.org/j.jssc.2004.01.009
- Резницкий Л.А. // Неорган. материалы. 1993. Т. 29. С. 1310.
- Bissengaliyeva M.R., Bespyatov M.A., Gogol D.B. et al. // J. Chem. Eng. Data. 2022. V. 67. P. 2059. https://doi.org/10.1021/acs.jced.2c00050
- Denisova L.T., Izotov A.D., Kargin Y.F. et al. // Dokl. Phys. Chem. 2017. V. 472.№2. P. 139. https://doi.org/10.1134/S0012501617080012
- Rosen P.F., Woodfield B.F. // J. Chem. Thermodyn. 2020. V. 141. P. 105974. https://doi.org/10.1016/j.jct.2019.105974
- Sabbah R., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331. P. 93. https://doi.org/10.1016/S0040-6031(99)00009-X
- Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94.№5. P. 573. https://doi.org/10.1515/pac-2019-0603
- Гуськов В.Н., Гавричев К.С., Гагарин П.Г., Гуськов А.В. //Журн. неорган. химии. 2019. Т. 64. С. 1072. https://doi.org/10.1134/S0044457X19100040
- Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Ceram. Int. 2021. V. 47. P. 28004. https://doi.org/10.1016/j.ceramint.2021.06.125
- Шляхтина А.В., Кнотько А.В., Ларина Л.Л. и др. // Неорган. материалы. 2004. Т. 40. С. 1495.
- Knop O., Brisse F., Castelliz L. // Can. J. Chem. 2011. V. 43. P. 2812. https://doi.org/10.1139/v65-392
- Wang Q., Ghasemi A., Scheie A. et al. // Cryst. Eng. Comm. 2019. V. 21. P. 703. https://doi.org/10.1039/c8ce01885e
- Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/ j.calphad.2018.02.001
- Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/ je400316m
- Konings R.J.M., Benes O., Kovacs A. et al. // J. Phys. Chem. Ref. Data. 2014. V. 4. P. 013101. https://doi.org/10.1063/1.4825256
- Chase M.W., Ir. NIST-JANAF Thermochemical Tables. Four Edition. Monograph № 9, Part I, II. Washington DC, 1998. 1963 p.
- Tari A. The specific heat of matter at low temperatures. London, Imperial College Press, 2003. Р. 211. https://doi.org/10.1142/9781860949395_0006
- Westrum E.F. Jr. // J. Therm. Anal. 1985. V. 30. P. 1209. https://doi.org/10.1007/BF01914288
- Bissengalieva M.R., Knyazev A.V., Bespyatov M.A. et al. // J. Chem. Thermodyn. 2022. V. 165. P. 106646. https://doi.org/10.1016/j.jct.2021.103346
- Глушко В.П. Термические константы веществ. Справочник. М., 1965–1982. https: //www.chem.msu.su/cgibin/tkv.pl?show=welcome.html&_ga=2.137226480.1380683462.17150713231284717817.1617178349 erbiumerbium
Supplementary files
