Influence of the Nature of the Central Atom on the Basicity of Octa(3,5-di-tert-butylphenoxy)phthalocyanine Complexes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The knowledge of the parameters and mechanisms of proton transfer from the medium to the macrocyclic ligand of highly substituted phthalocyanines complexes is necessary for the optimization of the technological processes of catalysis and creating functional materials. The complexes of octakis(3,5-di-tert-butylphenoxy)phthalocyanine with 3d-metal ions were synthesized and their acid-base reactions were studied using UV-vis and 1H NMR spectroscopy. The chemical structure of the complexes was established using elemental analysis, MALDI-TOF mass spectrometry, IR, 1H NMR and UV-vis spectroscopy. The complete protonation of Co, Ni and Cu complexes occurs in mixtures of dichloromethane – trifluoroacetic acid. The doubly and quadruple protonated forms are identified in the UV-vis spectra. The concentration ranges of existence, UV-vis parameters and thermodynamic stability constants of protonated forms were determined, as well as their relationship with the electronic structure of the coordination center.

Full Text

Restricted Access

About the authors

E. N. Ovchenkova

Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: enk@isc-ras.ru
Russian Federation, Ivanovo, 153045

T. N. Lomova

Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Email: enk@isc-ras.ru
Russian Federation, Ivanovo, 153045

References

  1. Demir S., Akbay S., Canımkurbey B. et al. // J. Mol. Struct. 2024. V. 1308. P. 137981. https://doi.org/10.1016/j.molstruc.2024.137981
  2. Ягодин А.В., Кормщиков И.Д., Мартынов А.Г. и др. // Журн. неорган. химии. 2023. V. 68. № 9. P. 1146. https://doi.org/10.31857/S0044457X23600706
  3. Ботнарь А.А., Знойко С.А., Домарева Н.П. и др. // Журн. неорган. химии. 2022. V. 67. № 3. P. 326. https://doi.org/10.31857/S0044457X22030047
  4. Ertekin Z., Symes M.D. // Appl. Catal., A: General. 2023. V. 666. P. 119388. https://doi.org/10.1016/j.apcata.2023.119388
  5. Arin Öztürmen B., Akkol Ç., Tugba Saka E. et al. // Inorg. Chem. Commun. 2023. V. 158. P. 111647. https://doi.org/10.1016/j.inoche.2023.111647
  6. Gümrükçü Köse G., Keser Karaoğlan G. // Chem. Phys. 2023. V. 565. P. 111737. https://doi.org/10.1016/j.chemphys.2022.111737
  7. Martynov A.G., Gorbunova Y.G., Nefedov S.E. et al. // Eur. J. Org. Chem. 2012. V. 2012. P. 6888. https://doi.org/10.1002/ejoc.201200944
  8. Филиппова А.А., Кернер А.А., Знойко С.А. и др. // Журн. неорган. химии. 2020. Т. 65. № 2. С. 243. https://doi.org/ 10.31857/S0044457X2002004X
  9. Tokunaga E., Mori S., Sumii Y. et al. // ACS Omega. 2018. V. 3. № 9. P. 10912. https://doi.org/10.1021/acsomega.8b01475
  10. Старухин А.С., Романенко А.А., Ильин А.Ю. и др. // Оптика и спектроскопия. 2023. V. 131. № 4. P. 518. https://doi.org/10.21883/OS.2023.04.55557.79-22
  11. Петров О.А., Максимова А.А., Рассолова А.Е. и др. // Журн. физ. химии. 2023. Т. 97. № 9. С. 1290. https://doi.org/10.31857/S0044453723090157
  12. Kovanova M.A., Kuz’mina I.A., Postnov A.S. et al. // Russ. J. Phys. Chem. A. 2023. V. 97. № 3. P. 477. https://doi.org/10.1134/s0036024423030147. [Кованова М.А., Кузьмина И.А., Постнов А.С. et al. // Журн. физ. химии. 2023. Т. 97. № 3. С. 386. https://doi.org/10.31857/S0044453723030147]
  13. Murali Krishnan M., Baskaran S., Arumugham M.N. // J. Fluorine Chem. 2017. V. 202. P. 1. https://doi.org/10.1016/j.jfluchem.2017.08.011
  14. Ивакин В.А., Румянцева Т.А., Галанин Н.Е. // Журн. общ. химии. 2023. Т. 93. № 6. С. 951. https://doi.org/10.31857/s0044460x23060148
  15. Topal S.Z., Yuksel F., Gürek A.G. et al. // J. Photochem. Photobiol., A: Chem. 2009. V. 202. № 2. P. 205. https://doi.org/10.1016/j.jphotochem.2008.12.009
  16. Иванова Ю.Б., Дмитриева О.А., Хрушкова Ю.В. и др. // Журн. общ. химии. 2020. Т. 90. № 5. С. 760. https://doi.org/10.31857/S0044460X20050157
  17. Малясова А.С., Кострова Е.А., Абрамов И.Г. и др. // Изв. Акад. наук. Сер. Химия. 2021. № 12. С. 2405.
  18. Kociscakova L., Senipek M.I., Zimcik P. et al. // J. Porphyrins Phthalocyanines. 2019. V. 23. P. 427. https://doi.org/10.1142/S108842461950024X
  19. Stuzhin P.A. // J. Porphyrins Phthalocyanines. 1999. V. 3. № 6. P. 500. https://doi.org/10.1002/(SICI)1099-1409(199908/10)3:6/7<500::AID-JPP168>3.0.CO;2-9
  20. Beeby A., FitzGerald S., Stanley C.F. // Photochem. Photobiol. 2001. V. 74. P. 566. https://doi.org/10.1562/0031-8655(2001)074<0566:POTZPI>2.0.CO;2
  21. Бычкова А.Н., Тихомирова Т.В., Казарян К.Ю. и др. // Журн. общ. химии. 2023. Т. 93. № 9. С. 1392. https://doi.org/10.31857/s0044460x23090081
  22. Ovchenkova E.N., Bichan N.G., Lomova T.N. // Dyes Pigments. 2016. V. 128. P. 263. https://doi.org/10.1016/j.dyepig.2016.02.004
  23. Suslova E.E., Ovchenkova E.N., Lomova T.N. // Tetrahedron Lett. 2014. V. 55. P. 4325. https://doi.org/10.1016/j.tetlet.2014.06.021
  24. Химия синтетических красителей / Под ред. Венкатарамана K.Л.: Химия, 1977. Т. 5. С. 211.
  25. Ogunsipe A., Nyokong T. // J. Mol. Struct. 2004. V. 689. № 1. P. 89. https://doi.org/10.1016/j.molstruc.2003.10.024
  26. Суслова Е.Е., Овченкова Е.Н., Ломова Т.Н. // Журн. физ. химии. 2013. V. 87. № 10. P. 1693. https://doi.org/10.7868/S0044453713100245
  27. Perelygin I.S., Afanas’eva A.M. // Russ. J. Struct. Chem. 1973. V. 14. № 6. P. 1033.
  28. Бичан Н.Г. Координационная химия и реакционная способность порфириновых комплексов родия и рения. Дис. … канд. хим. наук. 2013. 207 с.
  29. Овченкова Е.Н., Ломова Т.Н. // Журн. физ. химии. 2015. Т. 89. № 2. С. 207.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural formula of metallophthalocyanines.

Download (140KB)
3. Fig. 2. Variation of the electronic absorption spectrum of CuPc(3,5-di-tBuPh)8 in mixed solvent CF3COOH-CH2Cl2: CCF3COOH = 0-0.47 (a), 0.47-6.7 mol/L (b). The remaining lines correspond to intermediate acid concentrations.

Download (170KB)
4. Fig. 3. Dependence of the logarithm of the indicator ratio on the acidity function H0 of the mixed solvent for CuPc(3,5-di-tBuPh)8 (1), CoPc(3,5-di-tBuPh)8 (2) and NiPc(3,5-di-tBuPh)8 (3) for the first (a) and second (b) protonation stages (R2 = 0.98-0.99).

Download (173KB)
5. Fig. 4. Electronic absorption spectra of the protonated forms of CoPc(3,5-di-tBuPh)8 (a) and NiPc(3,5-di-tBuPh)8 (b) in CF3COOH-CH2Cl2.

Download (158KB)
6. Fig. 5. 1H NMR spectrum of NiPc(3,5-di-tBuPh)8 (7.8 × 10-3 mol/L) in CDCl3 (a) and in CDCl3 supplemented with 0.36 (b), 1.6 (c) and 2.9 mol/L CF3COOH (d)

Download (88KB)

Copyright (c) 2024 Russian Academy of Sciences