On the Interaction of Gold(III) Complexes with Methionine

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interaction of gold(III) complexes AuCl4, Au(bipy)Cl2+, Au(en)23+ and Au(C9H19N4)2+ with methionine (HMet) in an aqueous solution (pH 2.0 и 7.4; I = 0.2 M (NaCl), CAu = (5–10) × 10–5 M, CHMet < (6–50) × 10–5 M) at 25°C was studied. Methionine reduces gold(III) to gold(I), but the processes proceed much more slowly (hundreds of times) than under the action of thiols. As the density of ligands in the gold(III) complex increases, the rate of reactions with HMet decreases significantly.

Full Text

Restricted Access

About the authors

V. Yu. Kharlamova

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: kharlamova@niic.nsc.ru
Russian Federation, Novosibirsk, 630090

I. V. Mironov

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: kharlamova@niic.nsc.ru
Russian Federation, Novosibirsk, 630090

References

  1. Casini A., Kelter G., Gabbiani C. et al. // J. Biol. Inorg. Chem. 2009. V. 14. P. 1139. https://doi.org/10.1007/s00775-009-0558-9
  2. Brown D.H., Smith W.E. // Chem. Soc. Rev. 1980. V. 9. P. 217. https://doi.org/10.1039/CS9800900217
  3. Fricker S.P. // Gold Bull. 1996. V. 29. P. 53. https://doi.org/10.1007/BF03215464
  4. Gorini G., Magherini F., Fiaschi T. et al. // Biomedicines. 2021. V. 9. P. 871. https://doi.org/10.3390/biomedicines9080871
  5. Tong K.-C., Hu D., Wan P.-K. et al. // Front. Chem. 2020. V. 8. P. 587207. https://doi: 10.3389/fchem.2020.587207
  6. Gabbiani C., Casini A., Messori L. // Gold Bull. 2007. V. 40. P. 73. https://doi.org/10.1007/BF03215296
  7. Glišić B.Đ., Rychlewska U., Djuran M.I. // Dalton Trans. 2012. V. 41. P. 6887. https://doi.org/10.1039/C2DT30169E
  8. Mironov I.V., Kharlamova V.Yu. // ChemistrySelect. 2023. V. 8. P. e202301337. https://doi.org/10.1002/slct.202301337
  9. Миронов И.В., Харламова В.Ю. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1495. https://doi.org/10.31857/S0044457X23600639
  10. Миронов И.В., Харламова В.Ю., Ху Ц. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 342. https://doi.org/10.31857/S0044457X22601651
  11. Block B.P., Bailar J.C. // J.Am. Chem. Soc. 1951. V. 73. P. 4722. https://doi.org/10.1021/ja01154a071
  12. Brawner S.A., Lin I.J.B., Kim J.-H., Everett Jr.G.W. // Inorg. Chem. 1978. V. 17. P. 1304. https://doi.org/10.1021/ic50183a040
  13. Миронов И.В., Харламова В.Ю. // Журн. неорган. химии. 2017. Т. 62. № 12. С. 1672. https://doi.org/10.7868/S0044457X17120182
  14. Миронов И.В., Харламова В.Ю. // Журн. неорган. химии. 2017. Т. 62. № 7. С. 1014. https://doi.org/10.7868/S0044457X17070157
  15. Vujačić A.V., Savić J.Z., Sovilj S.P. et al. // Polyhedron. 2009. V. 28. P. 593. https://doi.org/10.1016/j.poly.2008.11.045
  16. Glišić B.Đ., Rajković S., Stanić Z.D., Djuran M.I. // Gold Bull. 2011. V. 44. P. 91. https://doi.org/10.1007/s13404-011-0014-9
  17. Bordignon E., Cattalini L., Natile G., Scatturin A. // J. Chem. Soc., Chem. Commun. 1973. P. 878. https://doi.org/10.1039/C39730000878
  18. Glišić B.Đ., Djuran M.I., Stanić Z.D., Rajković S. // Gold Bull. 2014. V. 47. P. 33. https://doi.org/10.1007/s13404-013-0108-7
  19. Al-Maythalony B.A., Wazeer M.I.M., Isab A.A., Ahmad S. // Spectroscopy. 2010. V. 24. P. 567. https://doi.org/10.3233/SPE-2010-0478
  20. Ericson A., Elding L.I., Elmroth S.K.C. // J. Chem. Soc., Dalton Trans. 1997. P. 1159. https://doi.org/10.1039/A608001D
  21. Annibale G., Canovese L., Cattalini L., Natile G. // J. Chem. Soc., Dalton Trans. 1980. P. 1017. https://doi.org/10.1039/DT9800001017
  22. Al-Maythalony B.A., Wazeer M.I.M., Isab A.A. // Inorg. Chim. Acta. 2010. V. 363. P. 3244. https://doi.org/10.1016/j.ica.2010.06.001
  23. Đurović M.D., Bugarčić Ž.D., Heinemann F.W., Eldik R. // Dalton Trans. 2014. V. 43. P. 3911. https://doi.org/10.1039/C3DT53140F
  24. Stadtman E.R, Moskovitz J., Levine R.L. // Antioxid. Redox Signal. 2003. V. 5. P. 577. https://doi.org/10.1089/152308603770310239

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Time variation of the UV spectrum of the solution upon interaction of AuCl4- with methionine (CAu = 1.0 × 10-4 mol/L, pH 2, l = 1 cm): a - CHMet = 6. 0 × 10-5 mol/L, time after mixing τ = 6 c (1), 30 s (2), 1 min (3), 1 min 30 s (4), 2-30 min (5); b - CHMet = 5.0 × 10-4 mol/L, time after mixing τ = 8 c (1), 30 s (2), 1 min (3).

Download (160KB)
3. Fig. 2. Time variation of the UV spectrum of the solution upon interaction of Au(bipy)Cl2+ with HMet. CAu = 1.0 × 10-4 mol/L, CHMet = 6.0 × 10-5 mol/L; τ = 5 c (1), 10 (2), 20 (3), 40 (4), 60 (5), 76 (6), 109 (7), 143 (8), 174 (9), 230 min (10); pH 2.0, l = 1 cm.

Download (318KB)
4. Fig. 3. Time variation of the UV spectrum of the solution upon interaction of Au(bipy)(OH)2+ with HMet. CAu = 1.0 × 10-4 mol/L, CHMet = 6.0 × 10-5 mol/L; τ = 5 c (1), 1 (2), 5 (3), 10 (4), 20 (5), 30 (6), 40 (7), 50 (8), 60 (9), 70 (10), 80 min (11); pH 7.4, l = 1 cm.

Download (255KB)
5. Fig. 4. Time variation of the UV spectrum of the solution upon interaction of Au(en)2* with HMet. CAu = 1.0 × 10-4 mol/L, CHMet = 5.0 × 10-4 mol/L; τ = 7 c to 20 min (1); pH 7.4, l = 1 cm. Addition of HCl to the solution to CHCl = 1.6 mol/L, τ = 8 c (2), 5 (3), 10 (4), 15 min (5).

Download (165KB)
6. Fig. 5. Structure of the Au(C9H19N4)2+ complex.

Download (42KB)
7. Fig. 6. Time variation of the UV spectrum of the solution upon interaction of Au(C9H19N4)2+ with GSH. CAu = 5.2 × 10-5 mol/L, CGSH = 1.0 × 10-3 mol/L; τ = 8 c (1), 5 (2), 15 (3), 25 (4), 35 (5), 45 (6), 55 (7), 70 (8), 90 (9), 115 (10), 140 (11), 230 min (12); pH 7.4, l = 1 cm.

Download (286KB)

Copyright (c) 2024 Russian Academy of Sciences