Novel double complex salts [M(im) n][RuNOCl5] (M = Ni, Cu): synthesis, structure, thermal properties
- Authors: Borodin А.O.1, Filatov E.Y.1, Plusnin P.E.1, Kuratieva N.V.1, Korenev S.V.1, Kostin G.A.1
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry
- Issue: Vol 69, No 9 (2024)
- Pages: 1308-1318
- Section: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://rjonco.com/0044-457X/article/view/676640
- DOI: https://doi.org/10.31857/S0044457X24090115
- EDN: https://elibrary.ru/JSTHYE
- ID: 676640
Cite item
Abstract
Methods for the synthesis of new double complex salts [Cu(im)4][RuNOCl5], [Ni(im)6][RuNOCl5]·H2O and [Ni(im)4(DMF)2][RuNOCl5] have been developed and their crystalline crystalline properties have been determined. structure. The thermal properties of synthesized DCS were studied in inert and reducing atmospheres using synchronous TG–DTA/EGA–MS analysis and ex situ X-ray diffraction of intermediate and final thermolysis products. It has been established that thermal decomposition occurs in three stages. The final products of thermolysis of [Cu(im)4][RuNOCl5] in inert and reducing atmospheres are a mixture of copper and ruthenium, and the product of thermal decomposition of [Ni(im)6][RuNOCl5]·H2O in an inert atmosphere is a mixture of nickel and ruthenium. In the nickel-ruthenium system, upon thermolysis in a reducing atmosphere in the range of up to 400°C, it is possible to obtain a supersaturated solid solution of Ni0.27Ru0.73. Increasing the thermolysis temperature to 800°C leads to partial decomposition of the solid solution.
Full Text

About the authors
А. O. Borodin
Nikolaev Institute of Inorganic Chemistry
Author for correspondence.
Email: borodin@niic.nsc.ru
Russian Federation, Novosibirsk, 630090
E. Yu. Filatov
Nikolaev Institute of Inorganic Chemistry
Email: borodin@niic.nsc.ru
Russian Federation, Novosibirsk, 630090
P. E. Plusnin
Nikolaev Institute of Inorganic Chemistry
Email: borodin@niic.nsc.ru
Russian Federation, Novosibirsk, 630090
N. V. Kuratieva
Nikolaev Institute of Inorganic Chemistry
Email: borodin@niic.nsc.ru
Russian Federation, Novosibirsk, 630090
S. V. Korenev
Nikolaev Institute of Inorganic Chemistry
Email: borodin@niic.nsc.ru
Russian Federation, Novosibirsk, 630090
G. A. Kostin
Nikolaev Institute of Inorganic Chemistry
Email: borodin@niic.nsc.ru
Russian Federation, Novosibirsk, 630090
References
- Fukuda R., Takagi N., Sakaki S. et al. // J. Phys. Chem. С. 2017. V. 121. P. 300. https://doi.org/acs.jpcc.6b09280
- Martynova S.A., Filatov E.Yu., Korenev S.V. et al. // J. Solid State Chem. 2014. V. 212. P. 42. https://doi.org/10.1016/j.jssc.2014.01.008
- Liu J., Zhang L.L., Zhang J. et al. // Nanoscale. 2013. V. 22 P. 11044. https://doi.org/10.1039/C3NR03813K
- Thirumalai D., Lee J.-U., Choi H. et al. // Chem. Commun. 2021. V. 54. P. 1947. https://doi.org/10.1039/D0CC07518C
- Masson G.H.C., Cruz T.R., Gois P.D.S. et al. // New J. Chem. 2021. V. 45. P. 11466. https://doi.org/10.1039/D1NJ01498F
- Sreenavya A., Ahammed S., Ramachandran A. et al. // Catal. Letters. 2022. V. 152. P. 848. https://doi.org/10.1007/s10562-021-03673-x
- Elia N., Estephane J., Poupin C. et al. // ChemCatChem. 2021. V. 13. P. 1559. https://doi.org/10.1002/cctc.202001687
- Ishihara A., Qian E.W., Finahari I.N. et al. // Fuel. 2005. V. 84. P. 1462. https://doi.org/10.1016/j.fuel.2005.03.006
- Potemkin D.I., Saparbaev E.S., Zadesenets A.V. et al. // Catal. Ind. 2018. V. 10. P. 62. https://doi.org/10.1134/S2070050418010099
- Kostin G.A., Plyusnin P.E., Filatov E.Y. et al. // Polyhedron. 2019. V. 159. P. 217. https://doi.org/10.1016/j.poly.2018.11.065
- Filatov E.Yu., Borodin A.O., Kuratieva N.V. et al. // New J. Chem. 2022. V. 46. P. 19009. https://doi.org/10.1039/D2NJ03402F
- Плюснин П.Е., Шубин Ю.В., Коренев С.В. // Журн. структур. химии. 2022. Т. 63. № 3. С. 271.
- Mercer E.E., McAllister W.A., Durig J.R. // Inorg. Chem. 1966. V. 5. P. 1881. https://doi.org/10.1021/ic50045a010
- Archer S.J., Auf der Heyde T.P.E., Foulds G.A. et al. // Trans. Met. Chem. 1982. V. 7. P. 59. https://doi.org/10.1007/BF00623811
- Naumov P., Jovanovski G. // Spectrosc. Lett. 1999. V. 32. P. 237. https://doi.org/10.1080/00387019909349980
- Powder Diffraction File, PDF-2, International Centre for Diffraction Data, Pennsylvania, USA. Powder Diffr. File, PDF-2, Int. Cent. Diffr. Data, Pennsylvania, USA (2014).
- Kraus W., Nolze G. POWDERCELL 2.4. Program for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting X-Ray Powder Patterns; Federal Institute for Materials Research and Testing: Berlin, 2000.
- Krumm S. An interactive Windows program for profile fitting and size/strain analysis, Mater. Sci. Forum, 1996. P. 228.
- Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Crystallogr. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- Enemark J.H., Feltham R.D. // Coord. Chem. Rev. 1974. V. 13. P. 339. https://doi.org/10.1002/9780470145227.ch88
- Sanchis-Perucho A., Martínez-Lillo J. // Dalton Trans. 2019. V. 48. P. 13925. https://doi.org/10.1039/c9dt02884f
- Samoľova E., Kuchar J., Grzimek V. et al. // Polyhedron. 2019. V. 170. P. 51. https://doi.org/10.1016/j.poly.2019.05.024
- Pedersen A.H., Julve M., Martínez-Lillo J. et al. // Dalton Trans. 2017. V. 46. P. 16025. https://doi.org/10.1039/c7dt02216f
- Mwanza T., Kürkçüoğlu G.S., Ünver H. et al. // J. Solid State Chem. 2022. V. 314. P. 123344. https://doi.org/10.1016/j.jssc.2022.123344
- Jikun Li, Xianqiang Huang, Song Yang et al. // Cryst. Growth Des. 2015. V. 15. № 4. P. 1907. https://doi.org/10.1021/acs.cgd.5b00086
- Бородин А.О., Филатов Е.Ю., Куратьева Н.В. и др. // Журн. структур. химии. 2023. Т. 64. № 11. P. 118092. https://doi.org/10.26902/jsc_id118092
- Скорик Н.А., Ильина К.А., Козик В.В. // Журн. неорган. химии. 2021. Т. 66. № 11. С. 1597. https://doi.org/10.31857/S0044457X21110180
- Костин Г.А., Бородин А.О., Куратьева Н.В. и др. // Коорд. химия. 2013. Т. 39. № 4. С. 244. https://doi.org/10.7868/S0132344X13040063
Supplementary files
