Novel double complex salts [M(im) n][RuNOCl5] (M = Ni, Cu): synthesis, structure, thermal properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Methods for the synthesis of new double complex salts [Cu(im)4][RuNOCl5], [Ni(im)6][RuNOCl5]·H2O and [Ni(im)4(DMF)2][RuNOCl5] have been developed and their crystalline crystalline properties have been determined. structure. The thermal properties of synthesized DCS were studied in inert and reducing atmospheres using synchronous TG–DTA/EGA–MS analysis and ex situ X-ray diffraction of intermediate and final thermolysis products. It has been established that thermal decomposition occurs in three stages. The final products of thermolysis of [Cu(im)4][RuNOCl5] in inert and reducing atmospheres are a mixture of copper and ruthenium, and the product of thermal decomposition of [Ni(im)6][RuNOCl5]·H2O in an inert atmosphere is a mixture of nickel and ruthenium. In the nickel-ruthenium system, upon thermolysis in a reducing atmosphere in the range of up to 400°C, it is possible to obtain a supersaturated solid solution of Ni0.27Ru0.73. Increasing the thermolysis temperature to 800°C leads to partial decomposition of the solid solution.

Full Text

Restricted Access

About the authors

А. O. Borodin

Nikolaev Institute of Inorganic Chemistry

Author for correspondence.
Email: borodin@niic.nsc.ru
Russian Federation, Novosibirsk, 630090

E. Yu. Filatov

Nikolaev Institute of Inorganic Chemistry

Email: borodin@niic.nsc.ru
Russian Federation, Novosibirsk, 630090

P. E. Plusnin

Nikolaev Institute of Inorganic Chemistry

Email: borodin@niic.nsc.ru
Russian Federation, Novosibirsk, 630090

N. V. Kuratieva

Nikolaev Institute of Inorganic Chemistry

Email: borodin@niic.nsc.ru
Russian Federation, Novosibirsk, 630090

S. V. Korenev

Nikolaev Institute of Inorganic Chemistry

Email: borodin@niic.nsc.ru
Russian Federation, Novosibirsk, 630090

G. A. Kostin

Nikolaev Institute of Inorganic Chemistry

Email: borodin@niic.nsc.ru
Russian Federation, Novosibirsk, 630090

References

  1. Fukuda R., Takagi N., Sakaki S. et al. // J. Phys. Chem. С. 2017. V. 121. P. 300. https://doi.org/acs.jpcc.6b09280
  2. Martynova S.A., Filatov E.Yu., Korenev S.V. et al. // J. Solid State Chem. 2014. V. 212. P. 42. https://doi.org/10.1016/j.jssc.2014.01.008
  3. Liu J., Zhang L.L., Zhang J. et al. // Nanoscale. 2013. V. 22 P. 11044. https://doi.org/10.1039/C3NR03813K
  4. Thirumalai D., Lee J.-U., Choi H. et al. // Chem. Commun. 2021. V. 54. P. 1947. https://doi.org/10.1039/D0CC07518C
  5. Masson G.H.C., Cruz T.R., Gois P.D.S. et al. // New J. Chem. 2021. V. 45. P. 11466. https://doi.org/10.1039/D1NJ01498F
  6. Sreenavya A., Ahammed S., Ramachandran A. et al. // Catal. Letters. 2022. V. 152. P. 848. https://doi.org/10.1007/s10562-021-03673-x
  7. Elia N., Estephane J., Poupin C. et al. // ChemCatChem. 2021. V. 13. P. 1559. https://doi.org/10.1002/cctc.202001687
  8. Ishihara A., Qian E.W., Finahari I.N. et al. // Fuel. 2005. V. 84. P. 1462. https://doi.org/10.1016/j.fuel.2005.03.006
  9. Potemkin D.I., Saparbaev E.S., Zadesenets A.V. et al. // Catal. Ind. 2018. V. 10. P. 62. https://doi.org/10.1134/S2070050418010099
  10. Kostin G.A., Plyusnin P.E., Filatov E.Y. et al. // Polyhedron. 2019. V. 159. P. 217. https://doi.org/10.1016/j.poly.2018.11.065
  11. Filatov E.Yu., Borodin A.O., Kuratieva N.V. et al. // New J. Chem. 2022. V. 46. P. 19009. https://doi.org/10.1039/D2NJ03402F
  12. Плюснин П.Е., Шубин Ю.В., Коренев С.В. // Журн. структур. химии. 2022. Т. 63. № 3. С. 271.
  13. Mercer E.E., McAllister W.A., Durig J.R. // Inorg. Chem. 1966. V. 5. P. 1881. https://doi.org/10.1021/ic50045a010
  14. Archer S.J., Auf der Heyde T.P.E., Foulds G.A. et al. // Trans. Met. Chem. 1982. V. 7. P. 59. https://doi.org/10.1007/BF00623811
  15. Naumov P., Jovanovski G. // Spectrosc. Lett. 1999. V. 32. P. 237. https://doi.org/10.1080/00387019909349980
  16. Powder Diffraction File, PDF-2, International Centre for Diffraction Data, Pennsylvania, USA. Powder Diffr. File, PDF-2, Int. Cent. Diffr. Data, Pennsylvania, USA (2014).
  17. Kraus W., Nolze G. POWDERCELL 2.4. Program for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting X-Ray Powder Patterns; Federal Institute for Materials Research and Testing: Berlin, 2000.
  18. Krumm S. An interactive Windows program for profile fitting and size/strain analysis, Mater. Sci. Forum, 1996. P. 228.
  19. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Crystallogr. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  20. Enemark J.H., Feltham R.D. // Coord. Chem. Rev. 1974. V. 13. P. 339. https://doi.org/10.1002/9780470145227.ch88
  21. Sanchis-Perucho A., Martínez-Lillo J. // Dalton Trans. 2019. V. 48. P. 13925. https://doi.org/10.1039/c9dt02884f
  22. Samoľova E., Kuchar J., Grzimek V. et al. // Polyhedron. 2019. V. 170. P. 51. https://doi.org/10.1016/j.poly.2019.05.024
  23. Pedersen A.H., Julve M., Martínez-Lillo J. et al. // Dalton Trans. 2017. V. 46. P. 16025. https://doi.org/10.1039/c7dt02216f
  24. Mwanza T., Kürkçüoğlu G.S., Ünver H. et al. // J. Solid State Chem. 2022. V. 314. P. 123344. https://doi.org/10.1016/j.jssc.2022.123344
  25. Jikun Li, Xianqiang Huang, Song Yang et al. // Cryst. Growth Des. 2015. V. 15. № 4. P. 1907. https://doi.org/10.1021/acs.cgd.5b00086
  26. Бородин А.О., Филатов Е.Ю., Куратьева Н.В. и др. // Журн. структур. химии. 2023. Т. 64. № 11. P. 118092. https://doi.org/10.26902/jsc_id118092
  27. Скорик Н.А., Ильина К.А., Козик В.В. // Журн. неорган. химии. 2021. Т. 66. № 11. С. 1597. https://doi.org/10.31857/S0044457X21110180
  28. Костин Г.А., Бородин А.О., Куратьева Н.В. и др. // Коорд. химия. 2013. Т. 39. № 4. С. 244. https://doi.org/10.7868/S0132344X13040063

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Calculated (1) and experimental (2) diffraction patterns for [Cu(im)4][RuNOCl5] (a) and [Ni(im)6][RuNOCl5] · H2O (b)

Download (129KB)
3. Fig. 2. Cationic and anionic parts of the [Cu(im)4][RuNOCl5] DCS. Hydrogen atoms are not shown for clarity, thermal ellipsoids are given with a probability of 50% (a). Packing of anionic and cationic fragments in the [Cu(im)4][RuNOCl5] DCS (b)

Download (233KB)
4. Fig. 3. Cationic and anionic fragments in the DCS [Ni(im)4(DMF)2][RuNOCl5]

Download (90KB)
5. Fig. 4. Thermal analysis curves for [Cu(im)4][RuNOCl5] in inert (red lines) and reducing (black lines) atmospheres

Download (278KB)
6. Fig. 5. Thermal analysis curves for [Ni(im)6][RuNOCl5] · H2O in inert (red lines) and reducing (black lines) atmospheres

Download (261KB)
7. Fig. 6. Experimental diffraction patterns of the products of thermal decomposition of DCS [Cu(im)4][RuNOCl5] (a) and [Ni(im)6][RuNOCl5] · H2O (b) in a hydrogen atmosphere at different temperatures

Download (198KB)
8. Fig. 7. Experimental diffraction patterns of the products of thermal decomposition in a hydrogen atmosphere of DCS [Cu(im)4][RuNOCl5] at 800C (a) and [Ni(im)6][RuNOCl5] H2O at 400C (b), theoretical diffraction patterns corresponding to metallic Cu, Ni, Ru and solid solution Ni0.27Ru0.73, as well as difference curves between the experimental diffraction pattern and the total theoretical

Download (217KB)

Copyright (c) 2024 Russian Academy of Sciences