Synthesis and thermodynamic properties of thulium titanate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The temperature stages of the crystallization process of thulium titanate of pyrochlore structural type during heating of the hydroxide precursor obtained by the reverse precipitation method have been studied by DSC/TG, X-ray phase analysis and electron microscopy. The molar heat capacity of Tm2Ti2O7 was measured in the temperature range 2–1870 K and on the basis of smoothed heat capacity the calculation of thermodynamic functions at 0–1900 K and the Gibbs energy of formation from oxides and from elements were performed. The contribution to the heat capacity of the Schottky anomaly at 20–320 K is highlighted.

Full Text

Restricted Access

About the authors

P. G. Gagarin

Kurnakov Institute General and Inorganic Chemistry Russian Academy of Sciences

Author for correspondence.
Email: guskov@igic.ras.ru
Russian Federation, 119991, Moscow

A. V. Guskov

Kurnakov Institute General and Inorganic Chemistry Russian Academy of Sciences

Email: guskov@igic.ras.ru
Russian Federation, 119991, Moscow

V. N. Guskov

Kurnakov Institute General and Inorganic Chemistry Russian Academy of Sciences

Email: guskov@igic.ras.ru
Russian Federation, 119991, Moscow

A. V. Khoroshilov

Kurnakov Institute General and Inorganic Chemistry Russian Academy of Sciences

Email: guskov@igic.ras.ru
Russian Federation, 119991, Moscow

K. S. Gavrichev

Kurnakov Institute General and Inorganic Chemistry Russian Academy of Sciences

Email: guskov@igic.ras.ru
Russian Federation, 119991, Moscow

References

  1. Тимофеев Н.И., Салибеков Г.Е., Романович И.В. // Изв. АН СССР. Неорган. материалы. 1971. Т. 7. С. 890.
  2. Щербакова Л.Г., Мамсурова Л.Г., Суханова Г.Е. // Успехи химии. 1979. Т. 48. С. 423.
  3. Комиссарова Л.Н., Шацкий В.М., Пушкина Г.Я. и др. Соединения редкоземельных элементов. Карбонаты, оксалаты, нитраты, титанаты. М.: Наука, 1984. 235 с.
  4. Арсеньев П.А., Глушкова В.Б., Евдокимов А.А. и др. Соединения редкоземельных элементов. Цирконаты, гафнаты, ниобаты, танталаты, антимонаты. М.: Наука, 1985. 261 с.
  5. Шляхтина А.В., Карягина О.К., Щербакова Л.Г. // Неорган. материалы. 2004. Т. 40. С. 67.
  6. Шляхтина А.В., Кнотько А.В., Ларина Л.Л. и др. // Неорган. материалы. 2004. Т. 40. С. 1495.
  7. Brixner L.H. // Inorg. Chem. 1964. V. 3. P. 1065.
  8. Ершова Л.М., Игнатьев Б.В., Кусалова Л.П. и др. // Изв. АН СССР. Неорган. материалы. 1977. Т. 13. С. 2042.
  9. Farmer J.M., Boather L.A., Chacoumakos B.C. et al. // J. Alloys Compd. 2014. V. 605. P. 63. https://doi.org/10.1016/j.jallcom.2014.03.153
  10. Саркисов Э.С., Бердников В.Р., Головина Г.П. // Изв. АН СССР. Неорган. материалы. 1967. Т. 3. С. 1637.
  11. Тимофеева Н.И., Крайнова З.И., Сакович В.Н. // Изв. АН СССР. Неорган. материалы. 1973. Т. 9. С. 1756.
  12. Колесников А.В., Щербакова Л.Г., Бреусов О.Н. // Докл. АН СССP. 1980. Т. 251. С. 142.
  13. Subramanian M., Aravamudan G., Subba Rao. // Prog. Solid State Chem. 1983. V. 15. P. 55.
  14. Kramer S.A., Tuller H.L. // Solid State Ionics. 1995. V. 82. P. 15. https://doi.org/10.1016/0167-2738(95)00156-Z
  15. Wang Z., Wang X., Zhou G. et al. // J. Eur. Ceram. Soc. 2019. V. 39. P. 3229. https://doi.org/10.1016/j.jeurceramsoc.2019.04.018
  16. Vassen R., Jarligo M.O., Steinke T. et al. // Surf. Coat. Technol. 2010. V. 205. P. 938. https://doi.org /10.1016/j.surfcoat.2010.08.151
  17. Yang D.Y., Xu C.P., Fu E.G. et al. // Nucl. Instrum. Methods. Phys. Res., Sect. B. 2015. V. 356–357. P. 69. https://doi.org/10.1016/j.nimb.2015.04.058
  18. Schiffer P., Ramirez A.P. // Comments Condens. Matter Phys. 1996. V. 18. P. 21.
  19. Greedan J.E. // J. Alloys Compd. 2006. V. 412. P. 444. https://doi.org/10.1016/j.jallcom.2024.12.084
  20. Zinkin M.P., Harris M.J., Tun Z. et al. // J. Phys.: Condens. Matter. 1996. V. 8. P. 103.
  21. Bissengalieva M.R., Knyazev A.V., Bespyatov M.A. et al. // J. Chem. Thermodyn. 2022. V. 165. P. 106646. https://doi.org/10.1016/j.jct.2021.103346
  22. Резницкий Л.А. // Неорган. материалы. 1993. Т. 29. С. 1310.
  23. Корнеев В.Р., Глушкова В.Б., Келер Э.К. // Изв. АН СССР. Неорган. материалы. 1971. Т. 7. С. 886.
  24. Папуцкий Ю.Н., Кржижановская В.А., Глушкова В.Б. // Изв. АН СССР. Неорган. материалы. 1974. Т. 10. С. 1551.
  25. Helean K.B., Ushakov S.V., Brown C.E. et al. // J. Solid State Chem. 2004. V. 177. P. 1858. https://doi.org/10.1016/j.jssc.2004.01.009
  26. Rosen P.F., Woodfield B.F. // J. Chem. Thermodyn. 2020. V. 141. P. 105974. https://doi.org/10.1016/j.jct.2019.105974
  27. Sabbah R., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331. P. 93. https://doi.org/10.1016/S0040-6031(99)00009-X
  28. Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94. P. 573. https://doi.org/10.1515/pac-2019-0603
  29. Гуськов В.Н., Гавричев К.С., Гагарин П.Г., Гуськов А.В. // Журн. неорган. химии. 2019. Т. 64. С. 1072. https://doi.org/10.1134/S0044457X19100040
  30. Guskov A.V., Gagarin P.G., Guskov V.N. et al. // Ceram. Int. 2021. V. 47. P. 28004. https://doi.org/10.1016/j.ceramint.2021.06.125
  31. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  32. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  33. Tari A. The specific heat of matter at low temperatures. L.: Imperial College Press, 2003. 211 p. https://doi.org/10.1142/9781860949395_0006
  34. Westrum E.F. Jr.// J. Therm. Anal. 1985. V. 30. P. 1209. https://doi.org/10.1007/BF01914288
  35. Konings R.J.M., Beneš O., Kovács A. et al. // J. Phys. Chem. Ref. Data. 2014. V. 4. P. 013101. https://doi.org/10.1063/1.4825256
  36. Chase M.W. // J. Phys. Chem. Ref. Data Monograph № 9 NIST-JANAF. Washington, 1998.
  37. Глушко В.П. Термические константы веществ. Справочник. М., 1965. https://www.chem.msu.su/cgibin/tkv.pl?show=welcome.html&_ga=2.137226480.1380683462.1715071323-1284717817.1617178349

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. DSC/TG of dried sample of Tm2Ti2O7 precursor

Download (92KB)
3. Fig. 2. X-ray diffraction of Tm2Ti2O7 precursor samples annealed at 500, 1000, 1200 and 1500C

Download (84KB)
4. Fig. 3. Morphology of thulium titanate samples: from left to right, annealing temperature 1000, 1200 and 1500С

Download (320KB)
5. Fig. 4. Heat capacity of thulium titanate according to: 1 – relaxation (2–42.4 K), 2 – adiabatic (5.9–341.4 K) and 3 – differential scanning (329–1869 K) calorimetry. The insets show the regions of the lowest temperatures and the connections between the results of measurements by the methods of adiabatic and differential scanning calorimetry.

Download (203KB)
6. Fig. 5. The difference in heat capacity of thulium and lutetium titanates: ΔCp = Cp(Tm2Ti2O7) – Cp(Lu2Ti2O7). The heat capacity of lutetium titanate is taken from [21]. The inset shows the difference ΔCp of thulium and lutetium titanates from the same work.

Download (168KB)
7. Fig. 6. Molar heat capacity of Tm2Ti2O7: 1 – measured by DSC and 2 – calculated by Neumann–Kopp from the heat capacities of simple oxides

Download (161KB)

Copyright (c) 2024 Russian Academy of Sciences