Preparation and chemosensor properties of nano–composite obtained by hydrothermal modification of Ti2CTx by hierarchically organised Co(CO3)0.5 (OH) ⋅ 0.11H2O
- Authors: Simonenko Е.P.1, Mokrushin A.S.1, Nagornov I.А.1, Dmitrieva S.А.1,2, Simonenko Т.L.1, Simonenko N.P.1, Kuznetsov N.T.1
-
Affiliations:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- D.I. Mendeleev Russian University of Chemical Technology. D.I. Mendeleev Russian Chemical and Technological University
- Issue: Vol 69, No 9 (2024)
- Pages: 1341-1352
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://rjonco.com/0044-457X/article/view/676645
- DOI: https://doi.org/10.31857/S0044457X24090146
- EDN: https://elibrary.ru/JSGKKA
- ID: 676645
Cite item
Abstract
The process of modification of Ti2CTx MXene multilayer by hydrothermal synthesis of bulk hierarchically organized formations of Co(CO3)0.5(OH)⋅0.11H2O has been studied. It is shown that under the chosen conditions MXene is partially oxidized with the formation of aggregates of titanium dioxide nanoparticles with a diameter of ~3–10 nm on its surface. The sensing properties of the obtained composite material at room temperature and relative humidity 65±3% to a wide range of gaseous analytes (50 ppm CO, benzene, acetone, ethanol, 2500 ppm H2, CH4, 5% O2 and 40 ppm NH3, NO2) were investigated. Increased sensitivity was found for the detection of 40 ppm NH3 and NO2: the responses were -91 and -63%, respectively. Some aspects of the detection mechanism are discussed. The results obtained show promising modification of multilayer MXene with semiconducting metal oxides and hierarchically formed bulk formations in order to improve its chemoresistive properties.
Keywords
Full Text

About the authors
Е. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: ep_simonenko@mail.ru
Russian Federation, Moscow, 119991
A. S. Mokrushin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
Russian Federation, Moscow, 119991
I. А. Nagornov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
Russian Federation, Moscow, 119991
S. А. Dmitrieva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; D.I. Mendeleev Russian University of Chemical Technology. D.I. Mendeleev Russian Chemical and Technological University
Email: ep_simonenko@mail.ru
Russian Federation, Moscow, 119991; Moscow, 125047
Т. L. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
Russian Federation, Moscow, 119991
N. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
Russian Federation, Moscow, 119991
N. T. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
Russian Federation, Moscow, 119991
References
- Zhang D., Pan W., Tang M. et al. // Nano Res. 2023. V. 16. № 10. P. 11959. https://doi.org/10.1007/s12274-022-5233-2
- Laor Y., Parker D., Pagé T. // Rev. Chem. Eng. 2014. V. 30. № 2. https://doi.org/10.1515/revce-2013-0026
- Han Z., Qi Y., Yang Z. et al. // J. Mater. Chem. С. 2020. V. 8. № 38. P. 13169. https://doi.org/10.1039/D0TC03750H
- Saxena P., Shukla P. // Environ. Prog. Sustain. Energy. 2023. V. 42. № 5. https://doi.org/10.1002/ep.14126
- Tyagi S., Chaudhary M., Ambedkar A.K. et al. // Sens. Diagnostics. 2022. V. 1. № 1. P. 106. https://doi.org/10.1039/D1SD00034A
- Kaur L. // J. Indian Chem. Soc. 2023. V. 100. № 6. P. 101019. https://doi.org/10.1016/j.jics.2023.101019
- Yuan Y., Jia H., Xu D. et al. // Sci. Total Environ. 2023. V. 857. P. 159563. https://doi.org/10.1016/j.scitotenv.2022.159563
- Joshi N., Hayasaka T., Liu Y. et al. // Microchim. Acta. 2018. V. 185. № 4. P. 213. https://doi.org/10.1007/s00604-018-2750-5
- Lay-Ekuakille A., Ikezawa S., Mugnaini M. et al. // Measurement. 2017. V. 98. P. 49. https://doi.org/10.1016/j.measurement.2016.10.055
- Dahmann D., Mosimann T., Matter U. // J. Aerosol Sci. 2000. V. 31. P. 21. https://doi.org/10.1016/S0021-8502(00)90027-2
- Das S., Mojumder S., Saha D. et al. // Sens. Actuators, B: Chem. 2022. V. 352. P. 131066. https://doi.org/10.1016/j.snb.2021.131066
- Righettoni M., Amann A., Pratsinis S.E. // Mater. Today. 2015. V. 18. № 3. P. 163. https://doi.org/10.1016/j.mattod.2014.08.017
- Wang Z., Wang C. // J. Breath Res. 2013. V. 7. № 3. P. 037109. https://doi.org/10.1088/1752-7155/7/3/037109
- Zhou X., Xue Z., Chen X. et al. // J. Mater. Chem. B. 2020. V. 8. № 16. P. 3231. https://doi.org/10.1039/C9TB02518A
- Amann A., Corradi M., Mazzone P. et al. // Expert Rev. Mol. Diagn. 2011. V. 11. № 2. P. 207. https://doi.org/10.1586/erm.10.112
- Tai H., Wang S., Duan Z. et al. // Sens. Actuators, B: Chem. 2020. V. 318. P. 128104. https://doi.org/10.1016/j.snb.2020.128104
- Zhai S., Li Z., Zhang H. et al. // Eng. Appl. Artif. Intell. 2024. V. 133. P. 108038. https://doi.org/10.1016/j.engappai.2024.108038
- Deshmukh S., Bandyopadhyay R., Bhattacharyya N. et al. // Talanta. 2015. V. 144. P. 329. https://doi.org/10.1016/j.talanta.2015.06.050
- Montuschi P., Mores N., Trové A. et al. // Respiration. 2013. V. 85. № 1. P. 72. https://doi.org/10.1159/000340044
- Behera B., Joshi R., Anil Vishnu G.K. et al. // J. Breath Res. 2019. V. 13. № 2. P. 024001. https://doi.org/10.1088/1752-7163/aafc77
- Yaqoob U., Younis M.I. // Sensors. 2021. V. 21. № 8. P. 2877. https://doi.org/10.3390/s21082877
- Fazio E., Spadaro S., Corsaro C. et al. // Sensors. 2021. V. 21. № 7. P. 2494. https://doi.org/10.3390/s21072494
- Zhu L.-Y., Ou L.-X., Mao L.-W. et al. // Nano-Micro Lett. 2023. V. 15. № 1. P. 89. https://doi.org/10.1007/s40820-023-01047-z
- Drmosh Q.A., Olanrewaju Alade I., Qamar M. et al. // Chem. – An Asian J. 2021. V. 16. № 12. P. 1519. https://doi.org/10.1002/asia.202100303
- Yu H., Guo C., Zhang X. et al. // Adv. Sustain. Syst. 2022. V. 6. № 4. https://doi.org/10.1002/adsu.202100370
- Ahmadipour M., Pang A.L., Ardani M.R. et al. // Mater. Sci. Semicond. Process. 2022. V. 149. P. 106897. https://doi.org/10.1016/j.mssp.2022.106897
- Yang D., Gopal R.A., Lkhagvaa T. et al. // Meas. Sci. Technol. 2021. V. 32. № 10. P. 102004. https://doi.org/10.1088/1361-6501/ac03e3
- Tyagi D., Wang H., Huang W. et al. // Nanoscale. 2020. V. 12. № 6. P. 3535. https://doi.org/10.1039/C9NR10178K
- Noreen S., Tahir M.B., Hussain A. et al. // Int. J. Hydrogen Energy. 2022. V. 47. № 2. P. 1371. https://doi.org/10.1016/j.ijhydene.2021.10.044
- Sett A., Rana T., Rajaji U. et al. // Sens. Actuators, A: Phys. 2022. V. 338. P. 113507. https://doi.org/10.1016/j.sna.2022.113507
- Hassan M., Liu S., Liang Z. et al. // J. Adv. Ceram. 2023. V. 12. № 12. P. 2149. https://doi.org/10.26599/JAС. 2023.9220810
- Mirzaei A., Lee M.H., Safaeian H. et al. // Sensors. 2023. V. 23. № 21. P. 8829. https://doi.org/10.3390/s23218829
- Wang F., Yeap S.P., Cheok C.Y. et al. // ChemBioEng. Rev. 2023. V. 10. № 6. P. 907. https://doi.org/10.1002/cben.202300010
- Mashangva T.T., Goel A., Bagri U. et al. // Appl. Mater. Today. 2024. V. 38. P. 102163. https://doi.org/10.1016/j.apmt.2024.102163
- Bhati V.S., Kumar M., Banerjee R. // J. Mater. Chem. С. 2021. V. 9. № 28. P. 8776. https://doi.org/10.1039/D1TC01857D
- Sai Bhargava Reddy M., Aich S. // Coord. Chem. Rev. 2024. V. 500. P. 215542. https://doi.org/10.1016/j.ccr.2023.215542
- Simonenko E.P., Simonenko N.P., Mokrushin A.S. et al. // Nanomaterials. 2023. V. 13. № 850. P. 1. https://doi.org/10.3390/nano13050850
- Sun Q., Wang J., Wang X. et al. // Nanoscale. 2020. V. 12. № 32. P. 16987. https://doi.org/10.1039/C9NR08350B
- Pazniak H., Plugin I.A., Loes M.J. et al. // ACS Appl. Nano Mater. 2020. V. 3. № 4. P. 3195. https://doi.org/10.1021/acsanm.9b02223
- Kuang D., Wang L., Guo X. et al. // J. Hazard. Mater. 2021. V. 416. P. 126171. https://doi.org/10.1016/j.jhazmat.2021.126171
- Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Micromachines. 2023. V. 14. № 4. P. 725. https://doi.org/10.3390/mi14040725
- Fan C., Shi J., Zhang Y. et al. // Nanoscale. 2022. V. 14. № 9. P. 3441. https://doi.org/10.1039/D1NR06838E
- Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Materials (Basel). 2023. V. 16. № 13. P. 4506. https://doi.org/10.3390/ma16134506
- Mokrushin A.S., Nagornov I.A., Averin A.A. et al. // Chemosensors. 2023. V. 11. № 2. P. 142. https://doi.org/10.3390/chemosensors11020142
- Liang D., Song P., Liu M. et al. // Ceram. Int. 2022. V. 48. № 7. P. 9059. https://doi.org/10.1016/j.ceramint.2021.12.089
- Gasso S., Mahajan A. // Mater. Sci. Semicond. Process. 2022. V. 152. P. 107048. https://doi.org/10.1016/j.mssp.2022.107048
- Shao Z., Zhao Z., Chen P. et al. // Inorg. Nano-Metal Chem. 2022. P. 1. https://doi.org/10.1080/24701556.2022.2078363
- Han Y., Zhang W., Ding Y. et al. // Analyst. 2024. V. 149. № 7. P. 2016. https://doi.org/10.1039/D3AN02191B
- Hermawan A., Zhang B., Taufik A. et al. // ACS Appl. Nano Mater. 2020. V. 3. № 5. P. 4755. https://doi.org/10.1021/acsanm.0c00749
- Wang L., Yao X., Yuan S. et al. // RSC Adv. 2023. V. 13. № 9. P. 6264. https://doi.org/10.1039/D2RA06903B
- Yao Y., Li Z., Han Y. et al. // Chem. Eng. J. 2023. V. 451. P. 139029. https://doi.org/10.1016/j.cej.2022.139029
- Liu Z., Mo X., Tian S. et al. // Sens. Actuators, B: Chem. 2024. V. 400. P. 134853. https://doi.org/10.1016/j.snb.2023.134853
- Song Y., Liu X., Deng C. et al. // Ceram. Int. 2024. V. 50. № 7. P. 10715. https://doi.org/10.1016/j.ceramint.2023.12.387
- Bu X., Ma F., Wu Q. et al. // Sens. Actuators, B: Chem. 2022. V. 369. P. 132232. https://doi.org/10.1016/j.snb.2022.132232
- Zhang D., Mi Q., Wang D. et al. // Sens. Actuators, B: Chem. 2021. V. 339. P. 129923. https://doi.org/10.1016/j.snb.2021.129923
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 705. https://doi.org/10.1134/S0036023622050187
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1850. https://doi.org/10.1134/S0036023622601222
- Badie S., Dash A., Sohn Y.J. et al. // J. Am. Ceram. Soc. 2021. V. 104. № 4. P. 1669. https://doi.org/10.1111/jace.17582
- Zhang Z., Zhou Y., Wu S. et al. // Ceram. Int. 2023. V. 49. № 22. P. 36942. https://doi.org/10.1016/j.ceramint.2023.09.025
- Liu A., Yang Q., Ren X. et al. // Ceram. Int. 2020. V. 46. № 5. P. 6934. https://doi.org/10.1016/j.ceramint.2019.11.008
- Roy C., Banerjee P., Bhattacharyya S. // J. Eur. Ceram. Soc. 2020. V. 40. № 3. P. 923. https://doi.org/10.1016/j.jeurceramsoc.2019.10.020
- Luo W., Liu Y., Wang C. et al. // J. Mater. Chem. С. 2021. V. 9. № 24. P. 7697. https://doi.org/10.1039/D1TC01338F
- Galvin T., Hyatt N.C., Rainforth W.M. et al. // J. Eur. Ceram. Soc. 2018. V. 38. № 14. P. 4585. https://doi.org/10.1016/j.jeurceramsoc.2018.06.034
- Roy C., Banerjee P., Mondal S. et al. // Mater. Today Chem. 2022. V. 26. P. 101160. https://doi.org/10.1016/j.mtchem.2022.101160
- Nadimi H., Soltanieh M., Sarpoolaky H. // Ceram. Int. 2022. V. 48. № 7. P. 9024. https://doi.org/10.1016/j.ceramint.2021.12.084
- Mokrushin A.S., Nagornov I.A., Gorobtsov P.Y. et al. // Chemosensors. 2022. V. 11. № 1. P. 13. https://doi.org/10.3390/chemosensors11010013
- Simonenko N.P., Fisenko N.A., Fedorov F.S. et al. // Sensors (Switzerland). 2022. V. 22. № 3247. P. 1. https://doi.org/10.3390/s22093473
- Mokrushin A.S., Nagornov I.A., Simonenko Т. L. et al. // Mater. Sci. Eng., B. 2021. V. 271. P. 115233. https://doi.org/10.1016/j.mseb.2021.115233
- Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Ceram. Int. 2020. V. 46. № 6. P. 7756. https://doi.org/10.1016/j.ceramint.2019.11.279
- Mokrushin A.S., Simonenko Т. L., Simonenko N.P. et al. // Appl. Surf. Sci. 2022. V. 578. P. 151984. https://doi.org/10.1016/j.apsusc.2021.151984
- Mokrushin A.S., Gorban Y.M., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2099. https://doi.org/10.1134/S0036023622601520
- Simonenko Т. L., Simonenko N.P., Gorobtsov P.Y. et al. // Appl. Sci. 2023. V. 13. № 10. P. 5844. https://doi.org/10.3390/app13105844
- Simonenko Т. L., Simonenko N.P., Gorobtsov P.Y. et al. // Materials (Basel). 2023. V. 16. № 12. P. 4202. https://doi.org/10.3390/ma16124202
- Liu S., Wang M., Liu G. et al. // Appl. Surf. Sci. 2021. V. 567. P. 150747. https://doi.org/10.1016/j.apsusc.2021.150747
- Zhang D., Yu S., Wang X. et al. // J. Hazard. Mater. 2022. V. 423. P. 127160. https://doi.org/10.1016/j.jhazmat.2021.127160
- Zhou Y., Wang Y., Wang Y. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 47. P. 56485. https://doi.org/10.1021/acsami.1c17429
- Porta P., Dragone R., Fierro G. et al. // J. Chem. Soc., Faraday Trans. 1992. V. 88. № 3. P. 311. https://doi.org/10.1039/FT9928800311
- Weirich T., Winterer M., Seifried S. et al. // Ultramicroscopy. 2000. V. 81. № 3–4. P. 263. https://doi.org/10.1016/S0304-3991(99)00189-8
- Zhou T., Gao W., Wang Q. et al. // Materials (Basel). 2018. V. 11. № 2. P. 207. https://doi.org/10.3390/ma11020207
- Wu J., Mi R., Li S. et al. // RSC Adv. 2015. V. 5. № 32. P. 25304. https://doi.org/10.1039/C4RA16937A
- Melchior S.A., Raju K., Ike I.S. et al. // J. Electrochem. Soc. 2018. V. 165. № 3. P. A501. https://doi.org/10.1149/2.0401803jes
Supplementary files
