Crystal polymorphism of the double pseudopolymeric gold(III)-thallium(III) dithiocarbamato-chlorido complex of [Au(S2CNPr2)2][TlCl4]: preparation, self-assembly of supramolecular architectures, and thermal behavior
- Authors: Bredyuk O.A.1, Zinchenko S.V.2, Smolentsev A.I.3, Ivanov A.V.1
-
Affiliations:
- Institute of Geology and Nature Management, Far Eastern Branch of the Russian Academy of Sciences
- Favorsky Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 70, No 8 (2025)
- Pages: 1051-1064
- Section: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://rjonco.com/0044-457X/article/view/690767
- DOI: https://doi.org/10.31857/S0044457X25080091
- EDN: https://elibrary.ru/jjqkil
- ID: 690767
Cite item
Abstract
The interaction of thallium(I) N,N-dipropyldithiocarbamate with [AuCl4]– anions in a 2M HCl medium was studied. The heterogeneous reaction of gold(III) binding from solution to the solid phase, including the red-ox process, results in the formation of a double dithiocarbamato-chlorido complex of [Au(S2CNPr2)2][TlCl4]. The crystals of the obtained compound are characterized by their ability to polymorphism: at 220 K the complex exists in the form of the α-modification (α-I), while at 296 K the β-modification (β-I) is stable. The α-I/β-I structures include 4/2 nonequivalent square-planar cations of [Au(S2CNPr2)2]+ (A, 2 B, C/A, B) and 2/1 distorted tetrahedral anions [TlCl4]–. Self-assembly of these structural units, which are combined due to interionic secondary interactions (the most important of which are chalcogen bonds S···Cl), leads to the formation of the complicated supramolecular architectures such as cation-anionic pseudo-polymeric ribbons. Alternating along the edges of these ribbons and acting as double linkers, thallium(III) anions pairwise combine neighboring isomeric complex cations of [Au(S2CNPr2)2]+, which are localized in the central part of the ribbons. When studying the thermal behavior of the complex, TlCl and elemental gold were identified as individual thermolysis products, which are quantitatively reduced and crystallized under low-temperature conditions (up to 300°C).
About the authors
O. A. Bredyuk
Institute of Geology and Nature Management, Far Eastern Branch of the Russian Academy of Sciences
Email: alexander.v.ivanov@chemist.com
Ryolochny Lane 1, Blagoveschensk, 675000 Russia
S. V. Zinchenko
Favorsky Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: alexander.v.ivanov@chemist.com
Irkutsk, 664033 Russia
A. I. Smolentsev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences
Email: alexander.v.ivanov@chemist.com
Novosibirsk, 630090 Russia
A. V. Ivanov
Institute of Geology and Nature Management, Far Eastern Branch of the Russian Academy of Sciences
Author for correspondence.
Email: alexander.v.ivanov@chemist.com
Ryolochny Lane 1, Blagoveschensk, 675000 Russia
References
- Иванов А.В., Бредюк О.А., Герасименко А.В. и др. // Коорд. химия. 2006. Т. 32. № 5. С. 354.
- Gomathi G., Thirumaran S., Ciattini S. // Polyhedron. 2015. V. 102. P. 424. https://doi.org/10.1016/j.poly.2015.09.071
- Manar K.K., Rajput G., Yadav M.K. et al. // Chem. Select. 2016. V. 1. № 18. P. 5733. https://doi.org/10.1002/slct.201601280
- Бредюк О.А., Лосева О.В., Иванов А.В. и др. // Коорд. химия. 2017. Т. 43. № 10. С. 602. https://doi.org/10.7868/S0132344X17100012
- Sivagurunathan G.S., Ramalingam K., Rizzoli C. // Polyhedron. 2013. V. 65. P. 316. https://doi.org/10.1016/j.poly.2013.08.007
- Rizzoli C., Ramalingam K., Alexander N. // Acta Crystallogr., Sect. E. 2008. V. 64. P. m1020. https://doi.org/10.1107/S1600536808021004
- Abrahamson H., Heiman J.R, Pignolet L.H. // Inorg. Chem. 1975. V. 14. № 9. P. 2070. https://doi.org/10.1021/ic50151a011
- Sánchez-Chapul L., Santamaría A., Aschner M. et al. // Front. Genet. 2023. V. 14. P. 1168713. https://doi.org/10.3389/fgene.2023.1168713
- Rodríguez-Mercado J.J., Altamirano-Lozano M.A. // Drug Chem. Toxicol. 2013. V. 36. № 3. P. 369. https://doi.org/10.3109/01480545.2012.710633
- Mahmoud G.A.-E., Mayer P., Gaber D.A., Ibrahim A.B.M. // Inorg. Chem. Commun. 2023. V. 156. P. 111283. https://doi.org/10.1016/j.inoche.2023.111283
- Abdolmaleki S., Ghadermazi M., Aliabadi A. // Sci. Rep. 2021. V. 11. P. 15699. https://doi.org/10.1038/s41598-021-95278-y
- Иванов А.В., Бредюк О.А., Лосева О.В., Анцуткин О.Н. // Журн. неорган. химии. 2016. Т. 61. № 6. С. 792. https://doi.org/10.7868/S0044457X16060106
- Иванов А.В., Бредюк О.А., Лосева О.В., Родина Т.А. // Коорд. химия. 2015. Т. 41. № 2. С. 107. https://doi.org/10.7868/S0132344X15020024
- Бредюк О.А., Лосева О.В., Родина Т.А. и др. // Журн. общ. химии. 2023. Т. 93. № 9. С. 1413. https://doi.org/10.31857/S0044460X2309010X
- Бырько В.М. Дитиокарбаматы. М.: Наука, 1984. 341 с.
- Nilson L., Hesse R. // Acta Chem. Scand. 1969. V. 23. № 6. P. 1951. https://doi.org/10.3891/acta.chem.scand.23-1951
- APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11), SHELXTL (version 6.12). Madison (WI, USA): Bruker AXS Inc., 2004.
- Sheldrick G.M. // Acta Crystallogr., Sect. С. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Soundararajan G., Subbaiyan M. // Sep. Sci. Technol. 1983. V. 18. № 7. P. 645. https://doi.org/10.1080/01496398308060301
- John Wiley & Sons, Inc. SpectraBase; SpectraBase Compound ID=3bc58nspq87 https://spectrabase.com/spectrum/2cFUfohDlZT (accessed January 2025).
- John Wiley & Sons, Inc. SpectraBase; SpectraBase Compound ID=F6dQw2iZVxu https://spectrabase.com/spectrum/TtHVh9ptgq (accessed January 2025).
- Brown D.A., Glass W.K., Burke M.A. // Spectrochim. Acta. Part A. 1976. V. 32. № 1. P. 137. https://doi.org/10.1016/0584-8539(76)80059-1
- Kellner R., Nikolov G.S., Trendafilova N. // Inorg. Chim. Acta. 1984. V. 84. № 2. P. 233. https://doi.org/10.1016/S0020-1693(00)82413-5
- Rodina T.A., Loseva O.V., Smolentsev A.I. et al. // Inorg. Chim. Acta. 2020. V. 508. P. 119630. https://doi.org/10.1016/j.ica.2020.119630
- Korneeva E.V., Lutsenko I.A., Zinchenko S.V. et al. // Inorg. Chim. Acta. 2024. V. 572. P. 122318. https://doi.org/10.1016/j.ica.2024.122318
- Rodina T.A., Ivanov A.V., Gerasimenko A.V. et al. // Polyhedron. 2012. V. 40. № 1. P. 53. https://doi.org/10.1016/j.poly.2012.03.043
- Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
- Yang L., Powel D.R., Houser R.P. // Dalton Trans. 2007. № 9. P. 955. https://doi.org/10.1039/B617136B
- Alcock N.W. // Adv. Inorg. Chem. Radiochem. 1972. V. 15. № 1. P. 1. https://doi.org/10.1016/S0065-2792(08)60016-3
- Бацанов С.С. // Неорган. материалы. 2001. Т. 37. № 9. С. 1031.
- Hu S.-Z., Zhou Z.-H., Xie Z.-X., Robertson B.E. // Z. Kristallogr. 2014. V. 229. № 7. P. 517. https://doi.org/10.1515/zkri-2014-1726
- Alvarez S. // Dalton Trans. 2013. V. 42. № 24. P. 8617. https://doi.org/10.1039/C3DT50599E
- Заева А.С., Иванов А.В., Герасименко А.В., Сергиенко В.И. // Журн. неорган. химии. 2015. Т. 60. № 2. С. 243. https://doi.org/10.7868/S0044457X15020233
- Заева А.С., Иванов А.В., Герасименко А.В. // Коорд. химия. 2015. Т. 41. № 10. С. 590. https://doi.org/10.7868/S0132344X15090108
- Wang W., Ji B., Zhang Y. // J. Phys. Chem. A. 2009. V. 113. № 28. P. 8132. https://doi.org/10.1021/jp904128b
- Scilabra P., Terraneo G., Resnati G. // Acc. Chem. Res. 2019. V. 52. № 5. P. 1313. https://doi.org/10.1021/acs.accounts.9b00037
- Лидин Р.А., Андреева Л.Л., Молочко В.А. Константы неорганических веществ: справочник. М.: Дрофа, 2008. С. 180.
Supplementary files
