Quantum‒Chemical Simulation of Molecular Hydrogen Abstraction from Magnesium Borohydride Diammoniate

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Within the framework of the cluster approach using the 6‒31G* basis set and the hybrid density functional (B3LYP), we modeled successive abstraction of H2 from the complexes (Mg(BH4)2∙2NH3)2 and (Mg(BH4)2∙2NH3)4. It was found that the initial stage of dehydrogenation needs overcoming energy barriers ~ 1.5‒1.2 eV, which requires preheating, then the process can go on with energy release until about 10 wt % of H2 is extracted, for a higher degree of conversion, additional energy costs exceeding the combustion heat of H2 will be required when extracting more than 12.5 wt % of H2. Therefore, further dehydrogenation of this compound may turn out to be inexpedient from the energy point of view.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Zyubin

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: zyubin@icp.ac.ru
Ресей, Chernogolovka, 142432

T. Zyubina

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: zyubin@icp.ac.ru
Ресей, Chernogolovka, 142432

O. Kravchenko

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: zyubin@icp.ac.ru
Ресей, Chernogolovka, 142432

M. Solov’ev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: zyubin@icp.ac.ru
Ресей, Chernogolovka, 142432

V. Vasiliev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: zyubin@icp.ac.ru
Ресей, Chernogolovka, 142432

A. Zaitsev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: zyubin@icp.ac.ru
Ресей, Chernogolovka, 142432

A. Shikhovtsev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Hydrogen energy center of AFK “Sistema”

Email: zyubin@icp.ac.ru
Ресей, Chernogolovka, 142432; Chernogolovka, 142432

Y. Dobrovol’sky

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Hydrogen energy center of AFK “Sistema”

Email: zyubin@icp.ac.ru
Ресей, Chernogolovka, 142432; Chernogolovka, 142432

Әдебиет тізімі

  1. Schlapbach L., Zuttel A. et al. // Nature. 2001. V. 414. P. 353. https://doi.org/10.1038/35104634
  2. ZüttelA. et al. // Mater. Today. 2003. V. 6. P. 24. https://doi.org/10.1016/S1369-7021(03)00922-2
  3. Семененко К.Н., Шилкин С.П., Полякова В.Б. и др. // Изв. АН СССР. Сер. хим. 1975. № 4. С. 735.
  4. Коноплев В.Н., Силина Т.А. и др. // Журн. неорган. химии. 1985. Т. 30. С. 1125.
  5. Кравченко О.В., Кравченко С.Е., Семененко К.Н. и др. // Журн. общ. химии. 1990. Т. 60. С. 2641.
  6. Кравченко О.В., Хафизова Г.М., Бурдина К.П. и др. // Журн. общ. химии.1994. Т. 64. С. 6.
  7. Yang Y., Liu Y., Zhang Y. et al. // J. Alloys Compounds. 2014. V. 585. P.674. https://doi.org/10.1016/j.jallcom.2013.09.208
  8. Orimo S.-I., Nakamori Y., Eliseo J.R. et al. // Chem. Rev. 2007.V. 107. P. 4111. https://doi.org/10.1021/cr0501846
  9. Satyapal S., Petrovic J., Read C. et al. // Catal. Today. 2007. V. 120. P. 246. https://doi.org/10.1016/j.cattod.2006.09.022
  10. Lu J., Fang Z.Z., Sohn H.Y. et al. // Inorg. Chem. 2006. V. 45. P. 8749. https://doi.org/10.1021/ic060836o
  11. Zavorotynska O., El-Kharbachi A., Deledda S. et al. // Int. J. Hydrogen Energy. 2016. V. 41. P.14387. https://doi.org/10.1016/j.ijhydene.2016.02.015
  12. Klyukin I.N., Vlasova Y.N., Novikov A.S. et al. // Symmetry. 2021.V.13. P. 464. https://doi.org/10.3390/sym13030464
  13. Klyukin I.N., Novikov A.S., Zhdanov A.P. et al. // Polyhedron. 2020.V.187. P. 114682. https://doi.org/10.1016/j.poly.2020.114682
  14. Зюбин А.С., Зюбина Т.С., Кравченко О.В. и др. // Журн. неорган. химии. 2016. Т. 61. С. 767.
  15. Зюбин А.С., Зюбина Т.С., Кравченко О.В. и др. // Журн. неорган. химии. 2017. Т. 62. С. 305.
  16. Зюбин А.С., Зюбина Т.С., Кравченко О.В. и др. // Журн. неорган. химии. 2018. Т. 63. С. 190.
  17. Solovev M.V., Chashchikhin O.V., Dorovatovskii P.V. et al. // J. Power Sources. 2018. V. 377. P. 93. https://doi.org/10.1016/j.jpowsour.2017.11.090
  18. Soloveichik G., Her J.-H., Stephens P.W. et al. // Inorg. Chem. 2008. V. 47. P. 4290. https://doi.org/10.1021/ic7023633
  19. Guo Y., Wu H., Zhou W. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 4690. https://doi.org/10.1021/ja1105893
  20. Yang Y.J., Gao M.X., Liu Y.F. et al. // Int. J. Hydrogen Energy. 2012. V.37.P.10733. https://doi.org/10.1016/j.ijhydene.2012.04.068
  21. Yang Y., Liu Y., Li Y. et al. // Chem. Asian J. 2013. V. 8. P. 476. https://doi.org/10.1002/asia.201200970
  22. Yang Y., Liu Y., Li Y. et al. // J. Phys. Chem. C. 2013. V. 117. P. 16326. https://doi.org/10.1021/jp404424m
  23. Jepsen L.H., Ley M.B., Filinchuk Y. et al. // Chem-Sus. Chem. 2015. V.8. P. 1452. https://doi.org/10.1002/cssc.201500029
  24. Paskevicius M., Jepsen L.H., Schouwink P. et al. // Chem. Soc. Rev. 2017. V. 46. P. 1565. https://doi.org/10.1039/c6cs00705h
  25. Yan Y., Dononelli W., Jorgensen M. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 9204. https://doi.org/10.1039/d0cp00158a
  26. Chen X., Yu X. et al. // J. Phys. Chem. C. 2012. V. 116. P. 11900. https://doi.org/10.1021/jp301986k
  27. Yuan P.-F., Wang F., Sun Q. et al. // Int. J. Hydrogen Energy. 2013. V. 38. P. 2836. https://doi.org/10.1016/j.ijhydene.2012.12.075
  28. Wang K., Zhang J.-G., Lang X.-Q. et al. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 7015. https://doi.org/10.1039/C5CP06808H
  29. Chen X., Li R., Xia G. et al. // RSC Adv. 2017. V. 7. P. 31027. https://doi.org/10.1039/c7ra05322c
  30. Chen X., Zou W., Li R. et al. // J. Phys. Chem. C. 2018. V. 122. P. 4241. https://doi.org/10.1021/acs.jpcc.8b00455
  31. Зюбин А.С., Зюбина Т.С., Кравченко О.В. и др. // Журн. неорган. химии. 2022. Т. 67. С. 1425.
  32. Becke A.D. et al. // J.Chem.Phys. 1993. V.98. P. 5648. https://doi.org/10.1063/1.464913
  33. Johnson B.J., Gill P.M.W., Pople J.A. et al. // J. Chem. Phys. 1993. V. 98. P. 5612.
  34. Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT, 2010. https://doi.org/10.1063/1.464906

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Configurations of the [Mg(BH4)22NH3]2 system that occur when up to three H2 molecules are removed. The number after the letter D indicates the number of H2 molecules removed.

Жүктеу (3MB)
3. Fig. 2. Gibbs energies for the configurations of the [Mg(BH4)22NH3]2 system arising from the removal of up to four (D0‒D4) and up to nine (D4‒D9) H2 molecules.

Жүктеу (537KB)
4. Fig. 3. Configurations of the [Mg(BH4)22NH3]2 system that occur when four to eight H2 molecules are removed.

Жүктеу (2MB)
5. Fig. 4. Configurations of the [Mg(BH4)22NH3]2 system that occur when eight to ten H2 molecules are removed.

Жүктеу (2MB)
6. Fig. 5. Gibbs energies for configurations of the Mg(BH4)22NH3]2 system that occur when nine to twelve (D9‒D12) H2 molecules are removed.

Жүктеу (285KB)
7. Fig. 6. Configurations of the [Mg(BH4)22NH3]2 system arising from the removal of eleven and twelve H2 molecules, and complexes arising from the unification of D9‒D12 structures.

Жүктеу (2MB)
8. Fig. 7. Configurations of the [Mg(BH4)22NH3]4 system that occur when eighteen to nineteen H2 molecules are removed.

Жүктеу (3MB)
9. Fig. 8. Configurations of the [Mg(BH4)22NH3]4 system that occur when nineteen to twenty-three H2 molecules are removed.

Жүктеу (3MB)
10. Fig. 9. Gibbs energies for the configurations of the [Mg(BH4)22NH3]4 system arising at a distance of eighteen to twenty-three H2 molecules.

Жүктеу (322KB)
11. Supplement
Жүктеу (79KB)

© Russian Academy of Sciences, 2024