Study of spin crossover phenomenon in dimethylsulfoxide solutions of an iron(ii) perrhenate complex with 2,6-bis(benzimidazol-2-yl)piridine

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

By methods of static magnetic susceptibility, conductometry and spectrophotometry measurements in UV and visible spectra ranges, there were studied physicochemical properties of solutions of perrhenate iron(II) complexes with 2,6-bis(benzimidazol-2-yl)pyridine (L) of composition [FeL2](ReO4)2 ⋅ 1.5H2O (1) in dimethylsulfoxide (DMSO). As it was established previously, 1 provides a sharp high-temperature spincrossover (SCO) 1А15Т2. The study of the temperature dependence of meff(Т) of complex 1 in DMSO showed that the SCO also reveals itself in solution. According to the electrical conductivity of solutions in DMSO at 298 K, the complex 1 in the studied concentration range 3.6 × 10–6 — 9.12 × 10–4 M is almost completely dissociated. An absorption peak was found in the UV region of the spectrum, which is practically independent on temperature. In the visible region, two combined absorption peaks are observed at 520–560 nm, which are responsible for the complex formation of FeL2+ and FeL22+ and vary with temperature and L concentration.

Авторлар туралы

V. Kokoivkin

Nikolaev Institute of Inorganic Chemistry, SB RAS

Хат алмасуға жауапты Автор.
Email: basil@niic.nsc.ru
Ресей, Novosibirsk

I. Mironov

Nikolaev Institute of Inorganic Chemistry, SB RAS

Email: basil@niic.nsc.ru
Ресей, Novosibirsk

Е. Korotaev

Nikolaev Institute of Inorganic Chemistry, SB RAS

Email: basil@niic.nsc.ru
Ресей, Novosibirsk

L. Lavrenova

Nikolaev Institute of Inorganic Chemistry, SB RAS

Email: basil@niic.nsc.ru
Ресей, Novosibirsk

Әдебиет тізімі

  1. Spin Crossover in Transition Metal Compounds I–III / Eds. Gütlich P., Goodwin H.A.Berlin, Heidelberg: Springer, 2004.
  2. Spin-Crossover Materials: Properties and Applications / Ed. Halcrow M.A. Wiley, 2013. 562 p.
  3. Kumar K.S., Ruben M. // Coord. Chem. Rev. 2017. V. 346. P. 176. https://doi.org/10.1016/j.ccr.2017.03.024
  4. Scott H.S., Staniland R.W., Kruger P.E. // Coord. Chem. Rev. 2018. V. 362. P. 24. https://doi.org/10.1016/j.ccr.2018.02.001
  5. Yang X., Enriquez-Cabrera A., Dorian Toha D. et al. // Dalton Trans. 2023. V. 52. P. 10828. https://doi.org/10.1039/d3dt02003g
  6. Kahn O., Krober J., Jay C. // Adv. Mater. 1992. V. 4. P. 718. https://doi.org/10.1002/adma.19920041103
  7. Enriquez-Cabrera A., Rapakousiou A., Bello M.P. et al. // Coord. Chem. Rev. 2020. V. 419. P. 213396. https://doi.org/10.1016/j.ccr.2020.213396
  8. Kumar K.S., Vela S., Heinrich B. et al. // Dalton Trans. 2020. V. 49. P. 1022. https://doi.org/10.1039/C9DT04411F
  9. Kuppusamy S.K., Mizuno A., Garcia-Fuente A. et al. // ACS Omega. 2022. V. 7. № 16. P. 13654. https://doi.org/10.1021/acsomega.1c07217
  10. Molnar G., Rat S., Salmon L. et al. // Adv. Mater. 2018. V. 30. P. 1703862. https://doi.org/10.1002/adma.201703862
  11. Shakirova O.G., Lavrenova L.G. // Crystals. 2020. V. 10. P. 843. https://doi.org/10.3390/cryst10090843
  12. Лавренова Л.Г., Шакирова О.Г. // Журн. неорган. химии. 2023. Т. 68. № 6. С. 774. https://doi.org/10.31857/S0044457X2360010X
  13. Guo W., Daro N., Pillet S. et al. // Chem. Eur. J. 2020. V. 26. № 57. P. 12927. https://doi.org/10.1002/chem.202001821
  14. Ribeiro P.O., Alho B.P., Ribas R.M. et al. // J. Magn. Magn. Mater. 2019. V. 489. P. 165340. https://doi.org/10.1016/j.jmmm.2019.165340
  15. Cuza E., Mekuimemba C.D., Cosquer N. et al. // Inorg. Chem. 2021. V. 60. № 9. P. 6536. https://doi.org/10.1021/acs.inorgchem.1c00335
  16. Craze A.R., Zenno H., Pfrunder M.C. et al. // Inorg. Chem. 2021. V. 60. № 9. P. 6731. https://doi.org/10.1021/acs.inorgchem.1c00553
  17. Piedrahita-Bello M., Angulo-Cervera J.E., Courson R. et al. // J. Mater. Chem. C. 2020. V. 8. № 18. P. 6001. https://doi.org/10.1039/D0TC01532F
  18. Nguyen T.D., Veauthier J.M., Angles-Tamayo G.F. et al. // J. Am. Chem. Soc. 2020. V. 142. № 10. P. 4842. https://doi.org/10.1021/jacs.9b13835
  19. Luo B.-X., Pan Y., Meng Y.-Sh. et al. // Eur. J. Inorg. Chem. 2021. V. 38. P. 3992. https://doi.org/10.1002/ejic.202100622
  20. Turo-Cortes R., Meneses–Sanchez M., Delgado T. et al. // J. Mater. Chem. C. 2022. V. 10. P. 10686. https://doi.org/10.1039/D2TC02039D
  21. Ibrahim N.M.J.N., Said S.M., Mainal A. et al. // Mater. Res. Bull. 2020. V. 126. P. 110828. https://doi.org/10.1016/j.materresbull.2020.110828
  22. Ribeiro P.J., Alho B.P., Ribas R.M. et al. // J. Magn. Magn. Mater. 2019. V. 489. P. 165340. https://doi.org/10.1016/j.jmmm.2019.165340
  23. Strauss B., Linert W., Gutmann V. et al. // Monatsh. Chem. 1992. V. 123. P. 537.
  24. Boca M., Jameson R.F., Linert W. // Coord. Chem. Rev. 2011. V. 255. P. 290. https://doi.org/10.1016/j.ccr.2010.09.010
  25. Bräunlich I., Sánchez-Ferrer A., Bauer M. et al. // Inorg. Chem. 2014. V. 53. P. 3546. https://doi.org/10.1021/ic403035u
  26. Sundaresan S., Kitchen J.A., Brooker S. // Inorg. Chem. Front. 2020. V. 7. P. 2050. https://doi.org/10.1039/c9qi01478k
  27. Nikovskiy I., Polezhaev A., Novikov V. et al. // Chem. Eur. J. 2020. V. 26. P. 5629. https://doi.org/10.1002/chem.202000047
  28. Toftlund H. // Coord. Chem. Rev. 1989. V. 94. P. 67.
  29. Lavrenova L.G., Shakirova O.G. // Eur. J. Inorg. Chem. 2013. № 5–6. P. 670. https://doi.org/10.1002/ejic.201200980
  30. Kokovkin V.V., Mironov I.V., Korotaev E.V. et al. // Chem. Select. 2019. V. 4. P. 9360. https://doi.org/10.1002/slct.201901424
  31. Коковкин В.В., Коротаев Е.В., И.В. Миронов И.В. и др. // Журн. структур. химии. 2021. Т. 62. № 8. С. 1277. https://doi.org/10.26902/JSC_id78495
  32. Лавренова Л.Г., Дюкова И.И., Коротаев Е.В. и др. // Журн. неорган. химии. 2020. Т. 65. № 1. С. 34. https://doi.org/10.31857/S0044457X20010109
  33. Селвуд П. Магнетохимия. М.: Изд-во иностр. литер., 1958. 458 с.
  34. Ракитин Ю.В., Калиников В.Т. Современная магнетохимия. СПб.: Наука, 1994. 276 с.
  35. Дей К., Селбин Д. Теоретическая неорганическая химия / Пер. с англ. М.: Химия, 1976. 568 с.
  36. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия. М.: Лань, 2015. 672 с.
  37. Добош Д. Электрохимические константы. Справочник для электрохимиков / Пер. с англ. М.: Мир, 1980. 365 с.
  38. Никитина М.Г., Пырэу Д.Ф. // Журн. неорган. химии. 2021. Т. 66. № 10. С. 1482. https://doi.org/10.31857/S0044457X21100123

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024