Study of spin crossover phenomenon in dimethylsulfoxide solutions of an iron(ii) perrhenate complex with 2,6-bis(benzimidazol-2-yl)piridine
- Authors: Kokoivkin V.V.1, Mironov I.V.1, Korotaev Е.V.1, Lavrenova L.G.1
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry, SB RAS
- Issue: Vol 69, No 5 (2024)
- Pages: 779-785
- Section: ФИЗИКОХИМИЯ РАСТВОРОВ
- URL: https://rjonco.com/0044-457X/article/view/666548
- DOI: https://doi.org/10.31857/S0044457X24050173
- EDN: https://elibrary.ru/YEIRRD
- ID: 666548
Cite item
Abstract
By methods of static magnetic susceptibility, conductometry and spectrophotometry measurements in UV and visible spectra ranges, there were studied physicochemical properties of solutions of perrhenate iron(II) complexes with 2,6-bis(benzimidazol-2-yl)pyridine (L) of composition [FeL2](ReO4)2 ⋅ 1.5H2O (1) in dimethylsulfoxide (DMSO). As it was established previously, 1 provides a sharp high-temperature spincrossover (SCO) 1А1 ↔ 5Т2. The study of the temperature dependence of meff(Т) of complex 1 in DMSO showed that the SCO also reveals itself in solution. According to the electrical conductivity of solutions in DMSO at 298 K, the complex 1 in the studied concentration range 3.6 × 10–6 — 9.12 × 10–4 M is almost completely dissociated. An absorption peak was found in the UV region of the spectrum, which is practically independent on temperature. In the visible region, two combined absorption peaks are observed at 520–560 nm, which are responsible for the complex formation of FeL2+ and FeL22+ and vary with temperature and L concentration.
About the authors
V. V. Kokoivkin
Nikolaev Institute of Inorganic Chemistry, SB RAS
Author for correspondence.
Email: basil@niic.nsc.ru
Russian Federation, Novosibirsk
I. V. Mironov
Nikolaev Institute of Inorganic Chemistry, SB RAS
Email: basil@niic.nsc.ru
Russian Federation, Novosibirsk
Е. V. Korotaev
Nikolaev Institute of Inorganic Chemistry, SB RAS
Email: basil@niic.nsc.ru
Russian Federation, Novosibirsk
L. G. Lavrenova
Nikolaev Institute of Inorganic Chemistry, SB RAS
Email: basil@niic.nsc.ru
Russian Federation, Novosibirsk
References
- Spin Crossover in Transition Metal Compounds I–III / Eds. Gütlich P., Goodwin H.A.Berlin, Heidelberg: Springer, 2004.
- Spin-Crossover Materials: Properties and Applications / Ed. Halcrow M.A. Wiley, 2013. 562 p.
- Kumar K.S., Ruben M. // Coord. Chem. Rev. 2017. V. 346. P. 176. https://doi.org/10.1016/j.ccr.2017.03.024
- Scott H.S., Staniland R.W., Kruger P.E. // Coord. Chem. Rev. 2018. V. 362. P. 24. https://doi.org/10.1016/j.ccr.2018.02.001
- Yang X., Enriquez-Cabrera A., Dorian Toha D. et al. // Dalton Trans. 2023. V. 52. P. 10828. https://doi.org/10.1039/d3dt02003g
- Kahn O., Krober J., Jay C. // Adv. Mater. 1992. V. 4. P. 718. https://doi.org/10.1002/adma.19920041103
- Enriquez-Cabrera A., Rapakousiou A., Bello M.P. et al. // Coord. Chem. Rev. 2020. V. 419. P. 213396. https://doi.org/10.1016/j.ccr.2020.213396
- Kumar K.S., Vela S., Heinrich B. et al. // Dalton Trans. 2020. V. 49. P. 1022. https://doi.org/10.1039/C9DT04411F
- Kuppusamy S.K., Mizuno A., Garcia-Fuente A. et al. // ACS Omega. 2022. V. 7. № 16. P. 13654. https://doi.org/10.1021/acsomega.1c07217
- Molnar G., Rat S., Salmon L. et al. // Adv. Mater. 2018. V. 30. P. 1703862. https://doi.org/10.1002/adma.201703862
- Shakirova O.G., Lavrenova L.G. // Crystals. 2020. V. 10. P. 843. https://doi.org/10.3390/cryst10090843
- Лавренова Л.Г., Шакирова О.Г. // Журн. неорган. химии. 2023. Т. 68. № 6. С. 774. https://doi.org/10.31857/S0044457X2360010X
- Guo W., Daro N., Pillet S. et al. // Chem. Eur. J. 2020. V. 26. № 57. P. 12927. https://doi.org/10.1002/chem.202001821
- Ribeiro P.O., Alho B.P., Ribas R.M. et al. // J. Magn. Magn. Mater. 2019. V. 489. P. 165340. https://doi.org/10.1016/j.jmmm.2019.165340
- Cuza E., Mekuimemba C.D., Cosquer N. et al. // Inorg. Chem. 2021. V. 60. № 9. P. 6536. https://doi.org/10.1021/acs.inorgchem.1c00335
- Craze A.R., Zenno H., Pfrunder M.C. et al. // Inorg. Chem. 2021. V. 60. № 9. P. 6731. https://doi.org/10.1021/acs.inorgchem.1c00553
- Piedrahita-Bello M., Angulo-Cervera J.E., Courson R. et al. // J. Mater. Chem. C. 2020. V. 8. № 18. P. 6001. https://doi.org/10.1039/D0TC01532F
- Nguyen T.D., Veauthier J.M., Angles-Tamayo G.F. et al. // J. Am. Chem. Soc. 2020. V. 142. № 10. P. 4842. https://doi.org/10.1021/jacs.9b13835
- Luo B.-X., Pan Y., Meng Y.-Sh. et al. // Eur. J. Inorg. Chem. 2021. V. 38. P. 3992. https://doi.org/10.1002/ejic.202100622
- Turo-Cortes R., Meneses–Sanchez M., Delgado T. et al. // J. Mater. Chem. C. 2022. V. 10. P. 10686. https://doi.org/10.1039/D2TC02039D
- Ibrahim N.M.J.N., Said S.M., Mainal A. et al. // Mater. Res. Bull. 2020. V. 126. P. 110828. https://doi.org/10.1016/j.materresbull.2020.110828
- Ribeiro P.J., Alho B.P., Ribas R.M. et al. // J. Magn. Magn. Mater. 2019. V. 489. P. 165340. https://doi.org/10.1016/j.jmmm.2019.165340
- Strauss B., Linert W., Gutmann V. et al. // Monatsh. Chem. 1992. V. 123. P. 537.
- Boca M., Jameson R.F., Linert W. // Coord. Chem. Rev. 2011. V. 255. P. 290. https://doi.org/10.1016/j.ccr.2010.09.010
- Bräunlich I., Sánchez-Ferrer A., Bauer M. et al. // Inorg. Chem. 2014. V. 53. P. 3546. https://doi.org/10.1021/ic403035u
- Sundaresan S., Kitchen J.A., Brooker S. // Inorg. Chem. Front. 2020. V. 7. P. 2050. https://doi.org/10.1039/c9qi01478k
- Nikovskiy I., Polezhaev A., Novikov V. et al. // Chem. Eur. J. 2020. V. 26. P. 5629. https://doi.org/10.1002/chem.202000047
- Toftlund H. // Coord. Chem. Rev. 1989. V. 94. P. 67.
- Lavrenova L.G., Shakirova O.G. // Eur. J. Inorg. Chem. 2013. № 5–6. P. 670. https://doi.org/10.1002/ejic.201200980
- Kokovkin V.V., Mironov I.V., Korotaev E.V. et al. // Chem. Select. 2019. V. 4. P. 9360. https://doi.org/10.1002/slct.201901424
- Коковкин В.В., Коротаев Е.В., И.В. Миронов И.В. и др. // Журн. структур. химии. 2021. Т. 62. № 8. С. 1277. https://doi.org/10.26902/JSC_id78495
- Лавренова Л.Г., Дюкова И.И., Коротаев Е.В. и др. // Журн. неорган. химии. 2020. Т. 65. № 1. С. 34. https://doi.org/10.31857/S0044457X20010109
- Селвуд П. Магнетохимия. М.: Изд-во иностр. литер., 1958. 458 с.
- Ракитин Ю.В., Калиников В.Т. Современная магнетохимия. СПб.: Наука, 1994. 276 с.
- Дей К., Селбин Д. Теоретическая неорганическая химия / Пер. с англ. М.: Химия, 1976. 568 с.
- Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия. М.: Лань, 2015. 672 с.
- Добош Д. Электрохимические константы. Справочник для электрохимиков / Пер. с англ. М.: Мир, 1980. 365 с.
- Никитина М.Г., Пырэу Д.Ф. // Журн. неорган. химии. 2021. Т. 66. № 10. С. 1482. https://doi.org/10.31857/S0044457X21100123
Supplementary files
