SURFACE DEGRADATION OF CERAMIC MATERIAL BASED ON THE ZrB2-HfB2-SiC SYSTEM UNDER THE INFLUENCE OF A SUBSONIC FLOW OF DISSOCIATED NITROGEN CONTAINING 5 mol. % CO2

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Ultra-high-temperature ceramics based on zirconium and hafnium diborides are of great scientific and technical interest, as they can be very promising, including as components of descent vehicles for space exploration. To study the behavior of these ceramics under the influence of high-speed flows of dissociated gases of complex composition and to determine the effect of modifying the ZrB2-HfB2-SiC system with carbon nanotubes, the process of surface degradation under the influence of a subsonic flow of dissociated nitrogen containing 5 mol. % CO2 was examined. Despite the relatively low CO2 content in the nitrogen plasma, the surface oxidation process dominated the conversion of the initial ZrB2/HfB2 into solid solutions based on monocarbonitrides of these metals. In this case, it was noted that a protective layer of silicate glass does not form on the surface, unlike similar materials under the influence of subsonic flows of dissociated air at temperatures <1750–1800°C.

作者简介

E. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
Moscow, Russia

A. Chaplygin

Ishlinskii Institute of Problems of Mechanics of the Russian Academy of Sciences

Email: chaplygin@ipmnet.ru
Moscow, Russia

A. Lysenkov

A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: ep_simonenko@mail.ru
Moscow, Russia

I. Nagornov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
Moscow, Russia

I. Lukomskii

Ishlinskii Institute of Problems of Mechanics of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
Moscow, Russia

A. Mokrushin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
Moscow, Russia

N. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
Moscow, Russia

A. Kolesnikov

Ishlinskii Institute of Problems of Mechanics of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
Moscow, Russia

N. Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ep_simonenko@mail.ru
Moscow, Russia

参考

  1. Simonenko E.P., Sevast’yanov D. V., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 14. P. 1669. https://doi.org/10.1134/S003602361340039
  2. Squire T.H., Marschall J. // J. Eur. Ceram. Soc. 2010. V. 30. № 11. P. 2239. https://doi.org/10.1016/j.jeurceramsoc.2010.01.026
  3. Baipai S., Dubey S., Venkateswaran T. et al. // Chem. Eng. J. 2024. V. 495. P. 153387. https://doi.org/10.1016/j.cej.2024.153387
  4. Parthasarathy T.A., Perry M.D., Ciubiuk M.K. et al. // J. Am. Ceram. Soc. 2013. V. 96. № 3. P. 907. https://doi.org/10.1111/jace.12180
  5. Zhao K., Ye F., Cheng L. et al. // J. Eur. Ceram. Soc. 2023. V. 43. № 16. P. 7241. https://doi.org/10.1016/j.jeurceramsoc.2023.07.046
  6. Thimmappa S.K., Golla B.R., VV B.P. // Silicon. 2022. V. 14. № 18. P. 12049. https://doi.org/10.1007/s12633-022-01945-8
  7. Nisar A., Hassan R., Agarwal A. et al. // Ceram. Int. 2022. V. 48. № 7. P. 8852. https://doi.org/10.1016/j.ceramint.2021.12.199
  8. Meng J., Fang H., Wang H. et al. // Int. J. Appl. Ceram. Technol. 2023. V. 20. № 3. P. 1350. https://doi.org/10.1111/ijac.14336
  9. Silvestroni L., Savino R., Cecere A. et al. // Compos. Part. A: Appl. Sci. Manuf. 2024. V. 185. P. 108293. https://doi.org/10.1016/j.compositesa.2024.108293
  10. Ni D., Cheng Y., Zhang J. et al. // J. Adv. Ceram. 2022. V. 11. № 1. P. 1. https://doi.org/10.1007/s40145-021-0550-6
  11. Mungiguerra S., Cecere A., Savino R. et al. // Corros. Sci. 2021. V. 178. P. 109067. https://doi.org/10.1016/j.corsci.2020.109067
  12. Sonber J.K., Murthy T.S.R.C., Majundar S. et al. // Mater. Perform. Charact. 2021. V. 10. № 2. P. 20200133. https://doi.org/10.1520/MPC20200133
  13. Cordeiro J.C., Zuzelski M., Hart J. et al. // Sol. Energy. 2025. V. 286. P. 113148. https://doi.org/10.1016/j.solener.2024.113148
  14. Barbarossa S., Orrià R., Cao G. et al. // J. Alloys Compd. 2023. V. 935. P. 167965. https://doi.org/10.1016/j.jallcom.2022.167965
  15. Kumar P.R., Hasan M.A., Dey A. et al. // J. Phys. Chem. C. 2021. V. 125. № 24. P. 13581. https://doi.org/10.1021/acs.jpcc.1c01984
  16. Paksoy A., Yidurim I.D., Arabi S. et al. // J. Alloys Compd. 2024. V. 983. P. 173749. https://doi.org/10.1016/j.jallcom.2024.173749
  17. Mahmood D.S.A., Khan A.A., Munot M.A. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2016. V. 146. P. 012002. https://doi.org/10.1088/1757-899X/146/1/012002
  18. Lonné Q., Glandut N., Lefort P. // J. Eur. Ceram. Soc. 2012. V. 32. № 4. P. 955. https://doi.org/10.1016/j.jeurceramsoc.2011.10.027
  19. Morris B.A., Povolny S.J., Seidel G.D. et al. // Open Ceram. 2023. V. 15. P. 100382. https://doi.org/10.1016/j.oceram.2023.100382
  20. Wang S., Chen H., Li Y. et al. // J. Eur. Ceram. Soc. 2023. V. 43. № 9. P. 3905. https://doi.org/10.1016/j.jeurceramsoc.2023.02.070
  21. Kim S.Y., Sesso M.L., Franks G. V. // J. Eur. Ceram. Soc. 2023. V. 43. № 5. P. 1762. https://doi.org/10.1016/j.jeurceramsoc.2022.12.027
  22. Povolny S.J., Seidel G.D., Tallon C. // Ceram. Int. 2022. V. 48. № 8. P. 11502. https://doi.org/10.1016/j.ceramint.2022.01.006
  23. Simonenko E.P., Simonenko N.P., Sevastyanov V.G. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 14. P. 1772. https://doi.org/10.1134/S00360236184005X
  24. Gardini D., Backman L., Kaczmarek P. et al. // Compos. Part. B: Eng. 2024. V. 277. P. 111373. https://doi.org/10.1016/j.compositesb.2024.111373
  25. Mungiguerra S., Silvestroni L., Savino R. et al. // Corros. Sci. 2022. V. 195. P. 109955. https://doi.org/10.1016/j.corsci.2021.109955
  26. He L., Wu J., Meng Q. et al. // Mater. Today Commun. 2025. V. 42. P. 111391. https://doi.org/10.1016/j.mtcomm.2024.111391
  27. Zoli L., Servadei F., Failla S. et al. // J. Adv. Ceram. 2024. V. 13. № 2. P. 207. https://doi.org/10.26599/JAC.2024.9220842
  28. Chen Y. // Ceram. — Silikaty. 2023. V. 67. № 3. P. 260. https://doi.org/10.13168/cs.2023.0026
  29. Tripathi S., Bhadauria A., Tiwari A. et al. // Diam. Relat. Mater. 2023. V. 140. P. 110537. https://doi.org/10.1016/j.diamond.2023.110537
  30. Dubey S., S A., Nisar A. et al. // Scr. Mater. 2022. V. 218. P. 114776. https://doi.org/10.1016/j.scriptamat.2022.114776
  31. Mehdipour M., Balak Z., Azizieh M. et al. // JOM. 2025. V. 77. № 4. P. 2001. https://doi.org/10.1007/s11837-024-07013-3
  32. Simonenko E.P., Kolesnikov A.F., Chaplygin A.V. et al. // Int. J. Mol. Sci. 2023. V. 24. № 17. P. 13634. https://doi.org/10.3390/ijms241713634
  33. Feltrin A.C., De Bona E., Karacasulu L. et al. // J. Eur. Ceram. Soc. 2025. V. 45. № 5. P. 117132. https://doi.org/10.1016/j.jeurceramsoc.2024.117132
  34. Hoque M.S. Bin, Milich M., Akhanda M.S. et al. // J. Eur. Ceram. Soc. 2023. V. 43. № 11. P. 4581. https://doi.org/10.1016/j.jeurceramsoc.2023.03.065
  35. Cheng Y., Zhou L., Liu J. et al. // J. Am. Ceram. Soc. 2023. V. 106. № 8. P. 4997. https://doi.org/10.1111/jace.19128
  36. Qin M., Gild J., Hu C. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 15. P. 5037. https://doi.org/10.1016/j.jeurceramsoc.2020.05.040
  37. Gild J., Zhang Y., Harrington T. et al. // Sci. Rep. 2016. V. 6. № 1. P. 37946. https://doi.org/10.1038/srep37946
  38. Geraksiev N.S. // J. Phys. Conf. Ser. 2019. V. 1390. № 1. P. 012121. https://doi.org/10.1088/1742-6596/1390/1/012121
  39. Kekelidze V.D., Matveev V.A., Meshkov I.N. et al. // Phys. Part. Nucl. 2017. V. 48. № 5. P. 727. https://doi.org/10.1134/S1063779617050239
  40. Sissakian A.N., Kekelidze V.D., Sorin A.S. // Nucl. Phys. A. 2009. V. 827. № 1–4. P. 630c. https://doi.org/10.1016/j.nuclphysa.2009.05.138
  41. Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2050. https://doi.org/10.1134/S0036023622618606
  42. Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 9. P. 1405. https://doi.org/10.1134/S00360236226190014X
  43. Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 1. P. 30. https://doi.org/10.1016/j.jeurceramsoc.2021.09.020
  44. Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 4. P. 1093. https://doi.org/10.1016/j.jeurceramsoc.2019.11.023
  45. Simonenko E.P., Simonenko N.P., Gordeev A.N. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 10. P. 1345. https://doi.org/10.1134/S0036023618100170
  46. Simonenko E.P., Papynov E.K., Shichalin O.O. et al. // Ceramics. 2024. V. 7. № 4. P. 1566. https://doi.org/10.3390/ceramics7040101
  47. Simonenko E.P., Simonenko N.P., Chaplygin A.V. et al. // Int. J. Refract. Met. Hard Mater. 2025. V. 130. P. 107139. https://doi.org/10.1016/j.ijrmhm.2025.107139
  48. Simonenko E.P., Kolesnikov A.F., Chaplygin A.V. et al. // Russ. J. Inorg. Chem. 2024. V. 69. № 4. P. 517. https://doi.org/10.1134/S0036023624600825
  49. Chaplygin A.V., Simonenko E.P., Kotov M.A. et al. // Plasma. 2024. V. 7. № 2. P. 300. https://doi.org/10.3390/plasma7020017
  50. Chaplygin A., Simonenko E., Simonenko N. et al. // Int. J. Therm. Sci. 2024. V. 201. P. 109005. https://doi.org/10.1016/j.ijthermalsci.2024.109005
  51. Kolesnikov A.F., Kuznetsov N.T., Murav'eva T.I. et al. // Fluid Dyn. 2022. V. 57. № 4. P. 513. https://doi.org/10.1134/S0015462822040061
  52. Simonenko E.P., Simonenko N.P., Kolesnikov A.F. et al. // Materials (Basel). 2022. V. 15. № 23. P. 8507. https://doi.org/10.3390/ma15238507
  53. Simonenko E.P., Chaplygin A.V., Simonenko N.P. et al. // Ceramics. 2025. V. 8. № 2. P. 67. https://doi.org/10.3390/ceramics8020067
  54. Gilman J.J. // J. Appl. Phys. 1970. V. 41. № 4. P. 1664. https://doi.org/10.1063/1.1659089
  55. Wong-Ng W., Hubbard C.R. // Powder Diffr. 1987. V. 2. № 04. P. 242. https://doi.org/10.1017/S0885715600012884
  56. Kawamura T. // Mineral. J. 1965. V. 4. № 5. P. 333. https://doi.org/10.2465/minerj1953.4.333
  57. Chaplygin A.V., Vasil'evskii S.A., Galkin S.S. et al. // Phys. Kinet. Gas Dyn. 2022. V. 23. № 2. P. 38. https://doi.org/10.33257/PhChGD.23.2.990
  58. Gordeev A. // VKI, RTO AVT/VKI Spec. Course Meas. Tech. High Enthalpy Plasma Flows 1999. https://apps.dtic.mil/sti/citations/ADP010736
  59. Bechelany M., Brioude A., Cornu D. et al. // Adv. Funct. Mater. 2007. V. 17. № 6. P. 939. https://doi.org/10.1002/adfm.200600816
  60. Quintard P.E., Barberis P., Mirgorodsky A.P. et al. // J. Am. Ceram. Soc. 2002. V. 85. № 7. P. 1745. https://doi.org/10.1111/j.1151-2916.2002.tb00346.x
  61. Wu R., Zhou B., Li Q. et al. // J. Phys. D. Appl. Phys. 2012. V. 45. № 12. P. 125304. https://doi.org/10.1088/0022-3727/45/12/125304

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025