Low-Temperature Synthesis of Highly Dispersed Strontium Aluminate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A new method for producing highly dispersed strontium aluminate with specified properties (low bulk density, particle size and shape) is described. The essence of the method is the sequential multi-stage heat treatment of a concentrated water-carbohydrate solution of Al(NO3)3, Sr(NO3)2, and D-glucose. The final product has a molar ratio of SrO : Al2O3 = 1 : 1. The main stages of the synthesis have been characterized by X-ray powder diffraction, SEM, and TEM methods. The initial stages of crystallization of SrAl2O4 upon heating at 1400°C have been revealed.

Sobre autores

L. Kozlova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: kozzllova167@gmail.com
119991, Moscow, Russia

Yu. Ioni

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Moscow Aviation Institute (National Research University)

Email: kozzllova167@gmail.com
119991, Moscow, Russia; 125993, Moscow, Russia

A. Son

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: kozzllova167@gmail.com
119991, Moscow, Russia

G. Buzanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: kozzllova167@gmail.com
119991, Moscow, Russia

G. Murav’eva

Moscow State University

Email: kozzllova167@gmail.com
119991, Moscow, Russia

I. Kozerozhets

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: kozzllova167@gmail.com
119991, Moscow, Russia

Bibliografia

  1. Ptáček P., Šoukal F., Opravil T. et al. // Ceram. Int. 2014. V. 40. P. 9971. https://doi.org/10.1016/j.ceramint.2014.02.095
  2. Smets B.M.J. // Mater. Chem. Phys. 1987. V. 16. P. 283. https://doi.org/10.1016/0254-0584(87)90103-9
  3. Khattab T. A., Rehan M., Hamdy Y. et al. Ind. Eng. Chem. Res. 2018. V. 57. P. 11483. https://doi.org/10.1021/acs.iecr.8b01594
  4. Calatayud D.G., Jardiel T., Cordero-Oyonarte E. et al. // Int. J. Mol. Sci. 2022. V. 23. P. 3410. https://doi.org/10.3390/ijms23063410
  5. Madej D., Silarski M., Parzych S. // Mater. Chem. Phys. 2021. V. 260. 124095. https://doi.org/10.1016/j.matchemphys.2020.124095
  6. Clabau F., Rocquefelte X., Jobic S. et al. // Chem. Mater. 2005. V. 17. P. 3904. https://doi.org/10.1021/cm050763r
  7. Sharma S., James J., Gupta S. et al. // Materials. 2023. V. 16. № 236. https://doi.org/10.3390/ma16010236
  8. Tseng H., Tzou W., Wei S. et al. // J. Mater. Res. Technol. 2020. V. 9. P. 14051. https://doi.org/10.1016/j.jmrt.2020.10.003
  9. Terraschke H., Suta M., Adlung M. et al. // J. Spectrosc. (Hindawi). 2015. V. 2015. P. 1. https://doi.org/10.1155/2015/541958
  10. Li J., Wang J., Yu Y. et al. // J. Rare Earths. 2017. V. 35. P. 530. https://doi.org/10.1016/S1002-0721(17)60944-X
  11. Zhang Y., Li L., Zhang X. et al. // J. Rare Earths. 2008. V. 26. P. 656. https://doi.org/10.1016/S1002-0721(08)60156-8
  12. Jin Y., Long X., Zhu Y. et al. // J. Rare Earths. 2016. V. 34. P. 1206. https://doi.org/10.1016/S1002-0721(16)60155-2
  13. Chen L., Zhang Z., Tian Y. et al. // J. Rare Earths. 2017. V. 35. P. 127. https://doi.org/10.1016/S1002-0721(17)60890-1
  14. Zhao R., Pang R., Li H. et al. // J. Rare Earths. 2014. V. 32. P. 797. https://doi.org/10.1016/S1002-0721(14)60143-5
  15. Kumar A., Kedawat G., Kumar P. et al. // New J. Chem. 2015. V. 39. P. 3380. https://doi.org/10.1039/c4nj02333a
  16. Xu J., Tanabe S. // J. Lumin. 2019. V. 205. P. 581. https://doi.org/10.1016/j.jlumin.2018.09.047
  17. Castaing V., Arroyo E., Becerro A. et al. // J. Appl. Phys. 2021. V. 130. 080902. https://doi.org/10.1063/5.0053283
  18. Ayvacıklı M., Ege A., Yerci S. et al. // J. Lumin. 2011. V. 131. P. 2432. https://doi.org/10.1016/j.jlumin.2011.05.051
  19. Rojas-Hernandez R.E., Rodriguez M.A., Rubio-Marcos F. et al. // J. Mater. Chem. C. 2015. V. 3. P. 1268. https://doi.org/10.1039/c4tc02262a
  20. Kochergina T.A., Aleshkina S.S., Khudyakov M.M. et al. // Quantum Electron. 2018. V. 48. P. 733. https://doi.org/10.1070/QEL16740
  21. Kozerozhets I.V., Panasyuk G.P., Semenov E.A. et al. // Ceram. Int. 2022. V. 48. P. 7522. https://doi.org/10.1016/j.ceramint.2021.11.296
  22. Panasyuk G.P., Kozerozhets I.V., Semenov E.A. et al. // Inorg. Mater. 2019. V. 55. P. 929. https://doi.org/10.1134/S0020168519090139
  23. Бучинская И.И., Сорокин Н.И. // Журн. неорган. химии. 2023. Т. 68. № 7. С. 877.
  24. Solovieva A.Y., Ioni Y.V., Baskakov A.O. et al. // Russ. J. Inorg. Chem. 2017. V. 62. P. 711. https://doi.org/10.1134/S0036023617060225
  25. Tatumi S.H., Soares A. de F., Tudela D.R.G. et al. // Radiat. Phys. Chem. 2019. V. 157. P. 15. https://doi.org/10.1016/j.radphyschem.2018.12.013
  26. Steblevskaya N.I., Belobeletskaya M.V., Medkov M.A. et al. // Russ. J. Inorg. Chem. 2017. V. 62. P. 275. https://doi.org/10.1134/S0036023617030160
  27. Sera M., Yamamoto M., Tomita K. et al. // Chem. Phys. Lett. 2021. V. 780. 138916. https://doi.org/10.1016/j.cplett.2021.138916
  28. Kozerozhets I.V., Avdeeva V.V., Buzanov G.A. et al. // Inorganics. 2022. V. 10. № 11. P. 212. https://doi.org/10.3390/inorganics10110212
  29. Kozerozhets I.V., Panasyuk G.P., Semenov E.A. et al. // Powder Technol. 2023. V. 413. 118030. https://doi.org/10.1016/j.powtec.2022.118030
  30. Jacob K.T., Shreyas V. // J. Mater. Sci. 2017. V. 53. P. 1723. https://doi.org/10.1007/s10853-017-1634-0
  31. Kim S., Won H., Hayk N. et al. // Mater. Sci. Eng., B. 2011. V. 176. P. 1521. https://doi.org/10. 1016/j.mseb.2011.09.014
  32. Xu C.-N., Yamada H., Wang X. et al. // Appl. Phys. Lett. 2004. V. 84. P. 3040. https://doi.org/doi/10.1063/1.1705716
  33. Kozerozhets I.V., Panasyuk G.P., Semenov E.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 1384. https://doi.org/10.1134/S0036023620090090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (270KB)
3.

Baixar (719KB)
4.

Baixar (1013KB)
5.

Baixar (1MB)
6.

Baixar (76KB)
7.

Baixar (252KB)
8.

Baixar (1MB)
9.

Baixar (244KB)
10.

Baixar (271KB)

Declaração de direitos autorais © Л.О. Козлова, Ю.В. Иони, А.Г. Сон, Г.А. Бузанов, Г.П. Муравьева, И.В. Козерожец, 2023