Features of the Synthesis of InGaMgO4 from Nitrate-Organic Precursors and the Study of Its’ Physical Properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This work reports on the possibility of producing the InGaMgO4 oxide by two-stage heat treatment of glycine-, starch- and PVA-nitrate precursors. The products formed as a result of their heating at low temperatures (≈ 90°С) were studied by powder X-ray diffraction. It was found that the powder formed from the glycine-nitrate precursor contains nanocrystalline In2O3, and drying of the polymer-nitrate compositions leads to the production of a thermally stable X-ray amorphous product. Its' annealing at temperatures above 800°C allows synthesizing InGaMgO4 powder free of impurity phases. High-temperature treatment of the powder formed from the glycine-nitrate precursor also leads to the production of InGaMgO4, but does not remove the In2O3 impurity. Using scanning electron microscopy, it was found that single-phase InGaMgO4 powders synthesized from polymer-nitrate precursors have a similar grain structure but differ in grain size distribution. Presumably, this difference is due to the structural features of starch and PVA macromolecules used for the preparation of precursors. The InGaMgO4 oxide was characterized using differential scanning calorimetry, Raman and diffuse reflectance spectroscopy. The value of its' band gap energy Eg was determined using the Tauc method.

Texto integral

Acesso é fechado

Sobre autores

M. Smirnova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: smirnova_macha1989@mail.ru
Rússia, Moscow

O. Kondratyeva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Rússia, Moscow

G. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Rússia, Moscow

A. Yapryntsev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Rússia, Moscow

A. Averin

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Rússia, Moscow

A. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Rússia, Moscow

Bibliografia

  1. Orita M., Takeuchi M., Sakai H. et al. // Jpn. J. Appl. Phys. 1995. V.34. № 11B. P. 1550. http://doi.org/10.7567/JJAP.34.L1550
  2. Moriga T., Sakamoto T., Sato Y. et al. // J. Solid State Chem. 1999. V. 142. № 1. P. 206. https://doi.org/10.1006/jssc.1998.8036
  3. Murat A., Medvedeva J.E. // Phys. Rev. B. 2012. V. 85. № 15. P. 155101. http://doi.org/10.1103/PhysRevB.85.155101
  4. Grajczyk R., Subramanian M.A. // Prog. Solid State Chem. 2015. V. 43. № 1–2. P. 37. http://doi.org/10.1016/j.progsolidstchem.2014.09.001 Kimizuka N., Mohri T. // J. Solid State Chem. 1985. V. 60. № 3. P. 382. https://doi.org/10.1016/0022-4596(85)90290-7
  5. Kimizuka N., Yamazaki S. Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO. Fundamentals. John Wiley & Sons Ltd, 2017.
  6. Tanaka Y., Wada K., Kobayashi Y. et al. // CrystEngComm. 2019. V. 21. № 19. P. 2985. https://doi.org/10.1039/C9CE00007K
  7. Lo C., Hsieh T. // Ceram. Int. 2012. V. 38. № 5. P. 3977. https://doi.org/10.1016/j.ceramint.2012.01.052
  8. Troughton J., Atkinson D. // J. Mater. Chem. C. 2019. V. 7. № 19. P. 12388. https://doi.org/10.1039/C9TC03933C
  9. Blasse G., Dirksen G.J., Kimizuka N. et al. // Mater. Res. Bull. 1986. V. 21. № 9. P. 1057. https://doi.org/10.1016/0025-5408(86)90221-7
  10. Meng X., Wang Z., Qiu K. et al. // Cryst. Growth Des. 2018. V. 18. № 8. P. 4691. https://doi.org/10.1021/acs.cgd.8b00672
  11. Patil K.C., Hedge M.S., Rattan T., Aruna S.T. Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications. Singapore: World Scientific Publishing Co. Pte. Ltd, 2008.
  12. Rogachev A.S., Mukasyan A.S. // Combust. Explos. Shock Waves. 2010. V. 46. P. 243. https://doi.org/10.1007/s10573-010-0036-2
  13. Alves A.K., Bergmann C.P., Berutti F.A. Novel Synthesis and Characterization of Nanostructured Materials. Heidelberg: Springer Berlin, 2013.
  14. Carlos E., Martins R. et al. // Chem. Eur. J. 2020. V. 26. № 42. P. 9099. https://doi.org/10.1002/chem.202000678
  15. Chick L.A., Pederson L.R., Maupin G.D. et al. // Mater. Lett. 1990. V. 10. № 1–2. P. 6. https://doi.org/10.1016/0167-577X(90)90003-5
  16. Khaliullin Sh.M., Zhuravlev V.D., Bamburov V.G. et al. // J. Sol-Gel Sci. Technol. 2020. V. 93. P. 251. https://doi.org/10.1007/s10971-019-05189-8
  17. Novitskaya E., Kelly J.P., Bhaduri S. et al. // Int. Mater. Rev. 2021. V. 66. № 3. P. 188. https://doi.org/10.1080/09506608.2020.1765603
  18. Mastalska-Poplawska J., Sikora M., Izak P. et al. // J. Sol-Gel Sci. Technol. 2020. V. 96. P. 511. https://doi.org/10.1007/s10971-020-05404-x
  19. Jiu J., Ge Y., Li X. et al. // Mater. Lett. 2002. V. 54. № 54. P. 260. https://doi.org/10.1016/S0167-577X(01)00573-0
  20. Klein L., Aparicio M., Jitianu A. Handbook of Sol-Gel Science and Technology. Springer Cham, 2018.
  21. Kondrat’eva O.N., Smirnova M.N., Nikiforova G.E. et al. // J. Eur. Ceram. Soc. 2021. V. 41. № 13. P. 6559. https://doi.org/10.1016/j.jeurceramsoc.2021.05.063
  22. Kondrat’eva O.N., Smirnova M.N., Nikiforova G.E. et al. // Ceram. Int. 2023. V. 49. № 1. P. 179. https://doi.org/10.1016/j.ceramint.2022.08.326
  23. Смирнова М.Н., Кондратьева О.Н., Никифорова Г.Е. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 581. https://doi.org/10.31857/S0044457X22602383
  24. Golam A.T.M., Eakman J.M., Yarbro S.L. // Ind. Eng. Chem. Res. 1995. V. 34. P. 4577. https://doi.org/10.1021/ie00039a053 https://www. .chem.msu.su/cgi-bin/tkv.pl?show= welcom.html
  25. Kelly J.T., Wexler A.S. // J. Geophys. Res. 2005. V. 110. № D11201. https://doi.org/10.1029/2004JD005583
  26. Dorofeeva O.V., Ryzhova O.N. // J. Chem. Thermodyn. 2009. V. 41. № 4. P. 433. https://doi.org/10.1016/j.jct.2008.12.001
  27. Varma A., Mukasyan A.S., Rogachev A.S. et al. // Chem. Rev. 2016. V. 116. № 23. P. 14493. https://doi.org/10.1021/acs.chemrev.6b00279
  28. Zhang C., Pei Y., Zhao L. et al. // J. Eur. Ceram. Soc. 2014. V. 34. № 1. P. 63. https://doi.org/10.1016/j.jeurceramsoc.2013.08.001
  29. Wu M., Hsiao K., Lu H. // Mater. Chem. Phys. 2015. V. 162. P. 386. http://doi.org/10.1016/j.matchemphys.2015.06.003
  30. Makula P., Pacia M., Macyk W. // J. Phys. Chem. Lett. 2018. V. 9. № 23. P. 6814. https://doi.org/10.1021/acs.jpclett.8b02892

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Digital photographs of products formed at the heating stage of the NOP: HNP (a), KNP (b) and PNP (c). The inserts show photos of the final powders

Baixar (284KB)
3. Fig. 2. Temperature dependence of the InGaMgO4 heat capacity: 1 — DSC data; 2 — calculated curve (equation (5))

Baixar (89KB)
4. Fig. 3. X-ray images of HNP evaporation products before and after their annealing in air at 1300°C

Baixar (88KB)
5. Fig. 4. X-ray images of the products of evaporation of CNP (a) and PNP (b) before and after their annealing in air at temperatures from 400 to 1200°C

Baixar (178KB)
6. Fig. 5. SEM images of InGaMgO4 powder annealed in air at 1200°C for 4 hours: a — CNG; b — PNP

Baixar (405KB)
7. Fig. 6. Raman spectrum of InGaMgO4 measured at room temperature

Baixar (75KB)
8. Fig. 7. The spectrum of diffuse reflection of InGaMgO4 in the UV and visible regions. The box shows a graph of the dependence (F(R) hv)2 of hv, used to evaluate Eg

Baixar (86KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024