Synthesis, structure and optical properties of semiconductor perovskite nanoparticles CsBX3 (B = Pb, Mn; X = Br, Cl)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Currently, ABX3 nanoparticles (NPs) based on lead halides attract the attention due to their unique optical properties and a wide range of applications. The preparation of NPs with lead as a partial or complete replacement is particularly interesting because of the toxicity of this chemical element and most of its compounds. In this study, we propose a modified method for perovskite NPs synthesis using manganese as a partial replacement for lead. The results obtained describe the structures, shapes and dimensions of the synthesized nanoparticles. It has been shown that partial replacement of lead with manganese leads to the appearance of new photoluminescence bands in the region of 600 nm.

Texto integral

Acesso é fechado

Sobre autores

V. Gushchina

Moscow Institute of Physics and Technology (National Research University); Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ya.l2er0us0ya2012@ya.ru
Rússia, Dolgoprudny, 141701; Moscow, 119991

A. Son

Moscow Institute of Physics and Technology (National Research University); Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: sonsacha@gmail.com
Rússia, Dolgoprudny, 141701; Moscow, 119991

A. Egorova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: sonsacha@gmail.com
Rússia, Moscow, 119991

A. Arkhipenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: sonsacha@gmail.com
Rússia, Moscow, 119991

M. Teplonogova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: sonsacha@gmail.com
Rússia, Moscow, 119991

N. Efimov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: sonsacha@gmail.com
Rússia, Moscow, 119991

S. Kozyukhin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: sonsacha@gmail.com
Rússia, Moscow, 119991

Bibliografia

  1. Cheng L., Chi J., Su M. et al. // J. Mater. Chem. C. 2023. № 11. P. 7970. https://doi.org/10.1039/D2TC04967H
  2. Terenziani F., Katan C., Badaeva E. et al. // Adv. Mater. 2008. V. 20. № 24. P. 4641. https://doi.org/10.1002/adma.200800402
  3. Kaur P., Singh K. // J. Mater. Chem. C. 2019. V. 7. № 37. P. 11361. https://doi.org/10.1039/C9TC03719E
  4. Zhang J., Campbell R.E., Ting A.Y. et al. // Nat. Rev. Mol. Cell Biol. 2002. V. 3. P. 906. https://doi.org/10.1038/nrm976
  5. Tsien R.Y. // Annu. Rev. Biochem. 1998. V. 67. P. 509. https://doi.org/10.1146/annurev.biochem.67.1.509
  6. Nagai T., Ibata K., Park E.S. et al. // Nat. Biotechnol. 2002. V. 20. P. 87. https://doi.org/10.1038/nbt0102-87
  7. Xue L., Yu Q., Griss R. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 25. P. 7112. https://doi.org/10.1002/anie.201702403
  8. Arts R., Ludwig S.K.J., Gerven B.C.B. van et al. // ACS Sensor. 2017. V. 2. № 11. P. 1730. https://doi.org/10.1021/acssensors.7b00695
  9. de Aberasturi D.J., Serrano-Montes A.B., Liz-Marzan L.M. // Adv. Opt. Mater. 2015. V. 3. № 5. P. 602. https://doi.org/10.1002/adom.201500053
  10. Pan Y., Zhang Y., Kang W. et al. // Mater. Adv. 2022. V. 3. P. 4053. https://doi.org/10.1039/D2MA00100D
  11. He Y., Petryk M., Liu Z. et al. // Nat. Photonics. 2021. V. 15. P. 36. https://doi.org/10.1038/s41566-020-00727-1
  12. Fateev S.A., Khrustalev V.N., Simonova A.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 997. https://doi.org/10.1134/S0036023622070087
  13. Muratova E.N., Moshnikov V.A., Aleshin A.N. et al. // Glass Phys Chem. 2023. V. 49. P. 672. https://doi.org/10.1134/S1087659623600357
  14. Fateev S.A., Stepanov N.M., Petrov A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 992. https://doi.org/10.1134/S0036023622070075
  15. The National Renewable Energy Laboratory (NREL) Best Research-Cell Efficiency Chart URL: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220630.pdf
  16. Reb L.K., Bohmer M., Predeschly B. et al. // Sol. RRL. 2022. V. 6. № 11. P. 2200537. https://doi.org/10.1002/solr.202200537
  17. Kolobkova E.V., Makurin A.V., Dadykin A.Y. et al. // Glass Phys Chem. 2022. V. 48. P. 403. https://doi.org/10.1134/S1087659622800070
  18. Mastryukov M.V., Son A.G., Tekshina E.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1492. https://doi.org/10.31857/S0044457X22100336
  19. Bartesaghi D., Ray A., Jiang J. et al. // APL Mater. 2018. V. 6. P. 121106. https://doi.org/10.1063/1.5060953
  20. Pandey N., Kumar A., Chakrabarti S. // RSC Advances. 2019. V. 9. № 51. P. 29556. https://doi.org/10.1039/c9ra05685h
  21. Travis W., Glover E. N. K., Bronstein H. // Chem. Sci. 2016. V. 7. № 7. P. 4548. https://doi.org/10.1039/C5SC04845A
  22. Parobek D., Dong Y., Qiao T. et al. // ACS Chem. Mater. 2018. V. 30. № 9. P. 2939. https://doi.org/10.1021/acs.chemmater.8b00310
  23. Kanoun M.B., Goumri-Said S. // Mater. Energy. 2021. V. 21. P. 100796. https://doi.org/10.1016/j.mtener.2021.100796
  24. Meinardi F., Akkerman Q. A., Bruni F. et al. // ACS Energy Lett. 2017. V. 2. P. 2368. https://doi.org/10.1021/acsenergylett.7b00701
  25. Li M., Zhang X., Du Y. et al. // J. Lumin. 2017. V. 190. P. 397. https://doi.org/10.1016/j.jlumin.2017.05.080
  26. Pandey N., Chakrabarti S. // IEEE J. Photovoltaics. 2020. V. 10. № 5. P. 1359. https://doi.org/10.1109/JPHOTOV.2020.3005210
  27. Kim. S.H., Park K.-D., Lee H.S. // MDPI. 2021. V. 14. № 2. P. 275. https://doi.org/10.3390/en14020275
  28. De A., Mondal N., Samanta A. // Nanoscale. 2017. V. 7. P. 16722. https://doi.org/10.1039/C7NR06745C
  29. Chen S. // Journal of Material Science: Materials in Electronics. 2019. V. 30. P. 19536. https://doi.org/10.1007/s10854-019-02319-4
  30. Pradeep K.P., Ranjani V. // APL Mater. 2020. V. 8. P. 020901. https://doi.org/10.1063/1.5140888
  31. Hills-Kimball K., Perez M.J., Nagaoka Y. et al. // ACS Chem. Mater. 2020. V. 32. № 6. P. 2489. https://doi.org/10.1021/acs.chemmater.9b05082
  32. Goldschmidt V.M., Die Gesetze der Krystallochemie // Naturwissenschaften. 1926. V. 14. № 21. P. 477. https://doi.org/10.1007/BF01507527
  33. Park J.-S., Lee H.-S., Lai J.R. et al. // J. ACS. 2003. V. 125. № 28. P. 8539. https://doi.org/10/1021/ja034180z

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Рис.1. ② : 1 – cspbbr3; 2 – cspbcl3–zbrz; 3 – cspbcl3; 4 – cspb1–ymnycl3–Zbrz; 5 – Cspb1–ymnycl3.

Baixar (220KB)
3. Рис. 2. Микрофотографии наночастиц различных составов: CsPbBr3 (а); CsPbCl3–zbr you (б); CsPbCl3 (в); CsPb1–yMnyCl3–zbr you (г); CsPb1–yMnyCl3 (д).

Baixar (681KB)
4. Fig. 3. ② : 1 – cspbbr3; 2 – cspbcl3–zbrz; 3 – cspbcl3; 4 – cspb1–ymnycl3–zbrz; 5 – Cspb1–Ymnycl3.

Baixar (119KB)
5. Fig. 4. 6-cspbbr3; 2 – cspbcl3 – zbrz; 3–cspbcl3; 4 – cspb1 – ymnycl3–zbrz; 5–cspb1 – ymnycl3.

Baixar (116KB)
6. Fig. 5. Photoluminescence spectra of nanoparticles: 1 – CsPbBr3 (λvozb = 365 nm); 2 – CsPbCl3–zBrz (λvozb = = 365 nm); 3 – CsPbCl3 (λvozb = 365 nm); 4 – CsPb1–yMnyCl3–zBrz (λvozb = 227 nm); 5 – CsPb1–yMnyCl3 (λvb = 241 nm).

Baixar (214KB)
7. Fig. 6. EPR spectra for CsPb1–yMnyCl3 nanoparticles (X-band, 294 K).

Baixar (101KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024