Synthesis of C-mercuro derivatives of ortho-carborane. Crystal structure of bis(2-phenyl-ortho-carboran-1-yl)mercury

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Many carborane derivatives, first synthesized during the rapid development of this field of chemistry in the 60s of the last century, remained completely uncharacterized by modern spectral and structural methods. In this work, a series of C-mercuro derivatives of ortho-carborane 1-PhHg-2-Ph-1,2-C2B10H10 and (2-R-1,2-C2B10H10)2Hg (R = H, Me, Ph) were newly synthesized and characterized by NMR spectroscopy. The molecular crystal structure of bis(2-phenyl-ortho-carboran-1-yl)mercury was determined by single crystal X-ray diffraction.

Sobre autores

S. Anufriev

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: sivaev@ineos.ac.ru
Rússia, Moscow

S. Timofeev

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: sivaev@ineos.ac.ru
Rússia, Moscow

D. Nasyrova

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: sivaev@ineos.ac.ru
Rússia, Moscow; Dolgoprudny

I. Sivaev

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Plekhanov Russian University of Economics

Autor responsável pela correspondência
Email: sivaev@ineos.ac.ru
Rússia, Moscow; Moscow

V. Bregadze

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: sivaev@ineos.ac.ru
Rússia, Moscow

Bibliografia

  1. Grimes R.N. Carboranes. London: Academic Press, 2016. 1058 p. https://doi.org/10.1016/C2014–0-01334–2
  2. Valliant J.F., Guenther K.J., King A.S. et al. // Coord. Chem. Rev. 2002. V. 232. № 1–2. P. 173. https://doi.org/10.1016/S0010–8545(02)00087–5
  3. Scholz M., Hey-Hawkins E. // Chem. Rev. 2011. V. 111. № 11. P. 7035. https://doi.org/10.1021/cr200038x
  4. Zargham E.O., Mason C.A., Lee M.W. // Int. J. Cancer Clin. Res. 2019. V. 6. № 2. P. 110. http://doi.org/10.23937/2378-3419/1410110
  5. Chen Y., Du F., Tang, L. et al. // Mol. Ther. Oncolytics. 2022. V. 24. P. 400. https://doi.org/10.1016/j.omto.2022.01.005
  6. Mukherjee S., Thilagar P. // Chem. Commun. 2016. V. 52. № 6. P. 1070. https://doi.org/10.1039/C5CC08213G
  7. Li X., Yan H., Zhao Q. // Chem. Eur. J. 2016. V. 22. № 6. P. 1888. https://doi.org/10.1002/chem.201503456
  8. Ochi J., Tanaka K., Chujo Y. // Angew. Chem. Int. Ed. 2020. V. 59. № 25. P. 9841. https://doi.org/10.1002/anie.201916666
  9. Tanaka K., Gon M., Ito S. et al. // Coord. Chem. Rev. 2022. V. 472. P. 214779. https://doi.org/10.1016/j.ccr.2022.214779
  10. Zhang X., Yan H. // Coord. Chem. Rev. 2019. V. 378. P. 466. https://doi.org/10.1016/j.ccr.2017.11.006
  11. Hu J.R., Wang J.H., Jin K.G., Zhu C.P. // Russ. J. Coord. Chem. 2020. V. 46. № 6. P. 437. https://doi.org/10.1134/S1070328420060019
  12. Hu J.R., Wang J.H. // J. Struct. Chem. 2022. V. 63. № 10. P. 1551. https://doi.org/10.1134/S0022476622100018
  13. Hu J.R., Wang J.H. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1329. https://doi.org/10.1134/S0036023622600654
  14. Yu W.-B., Cui P.-F., Gao W.-X., Jin G.-X. // Coord. Chem. Rev. 2017. V. 350. P. 300. https://doi.org/10.1016/j.ccr.2017.07.006
  15. Quan Y., Xie Z. // Chem. Soc. Rev. 2019. V. 48. № 13. P. 3660. https://doi.org/10.1039/C9CS00169G
  16. Сиваев И.Б. // Журн. неорг. химии. 2021. Т. 66. № 9. С. 1192.
  17. Wang Q., Liu B., Feng K., Hashmi, A.S.K. // Adv. Synth. Catal. 2022, V. 364. № 24. P. 4174. https://doi.org/10.1002/adsc.202201183
  18. Zhang J., Xie Z. // Org. Chem. Front. 2023. V. 10. № 12. P. 3074. https://doi.org/10.1039/D3QO00621B
  19. Sivaev I.B. // Chemistry. 2023. V. 5. № 2. P. 834. https://doi.org/10.3390/chemistry5020059
  20. Akram M.O., Tidwell J.R., Dutton J.L., Martin, C.D. // Angew. Chem. Int. Ed. 2023. V. 62. № 34. P. е202307040. https://doi.org/10.1002/anie.202307040
  21. Vashisth K., Dutta S., Akram M.O., Martin C.D. // Dalton Trans. 2023. V. 52. № 28. P. 9639. https://doi.org/10.1039/D3DT01557B
  22. Diab M., Jaiswal K., Bawari D., Dobrovetsky R. // Israel J. Chem. 2023. V. 63. № 78. P. e202300010. https://doi.org/10.1002/ijch.202300010
  23. Xiang L., Wang J., Krummenacher I. et al. // Chem. Eur. J. 2023. V. 29. № 42. P.e202301270. https://doi.org/10.1002/chem.202301270
  24. Shernyukov A.V., Salnikov G.E., Rudakov D.A., Genaev A.M. // Inorg. Chem. 2021. V. 60. № 5. P. 3106. https://doi.org/10.1021/acs.inorgchem.0c03392
  25. Anufriev S.A., Timofeev S.V., Zhidkova O.B. et al. // Crystals. 2022. V. 12. № 9. P. 1251. https://doi.org/10.3390/cryst12091251
  26. Zhidkova O.B., Druzina A.A., Anufriev S.A. et al. // Molbank. 2022. V. 2022. № 1. P. M1347. https://doi.org/10.3390/M1347
  27. Guo W., Guo C., Ma Y.-N., Chen X. // Inorg. Chem. 2022. V. 61. № 13. P. 5326. https://doi.org/10.1021/acs.inorgchem.2c00074
  28. Lu W., Wu Y., Ma Y.-N. et al. // Inorg. Chem. 2023. V. 62. № 2. P. 885. https://doi.org/10.1021/acs.inorgchem.2c03694
  29. Suponitsky K.Yu., Anufriev S.A., Sivaev I.B. // Molecules. 2023. V. 28. № 2. P. 875. https://doi.org/10.3390/molecules28020875
  30. Рудаков Д.А., Генаев А.М., Гатилов Ю.В. и др. // Изв. Акад. наук. Сер. хим. 2020. № 2. С. 320. https://doi.org/10.1007/s11172–020–2763–1
  31. Ma Y.-N., Ren H., Wu Y. et al. // J. Am. Chem. Soc. 2023. V. 145. № 13. P. 7331. https://doi.org/10.1021/jacs.2c13570
  32. Сиваев И.Б., Стогний М.Ю. // Изв. Акад. наук. Сер. хим. 2019. № 2. С. 217. https://doi.org/10.1007/s11172–019–2379–5
  33. Hawthorne M.F., Andrews T.D., Garrett P.M. et al. // Inorganic Syntheses / Ed. Earl L. Muetterties. NY, San Francisco: McGraw-Hill, 1967. V. 10. P. 91. https://doi.org/10.1002/9780470132418.ch17
  34. Brain P.T., Cowie J., Donohoe D.J. et al. // Inorg. Chem. 1996. V. 35. № 6. P. 1701. https://doi.org/10.1021/ic9511128
  35. Sharma R. // Lett. Org. Chem. 2022. V. 19. № 12. P. 1077. http://dx.doi.org/10.2174/1568026622666220516122705
  36. Armarego W.L.F., Chai C.L.L. Purification of Laboratory Chemicals. Burlington, MA: Butterworth-Heinemann, 2009. 743 p.
  37. CrysAlisPro. Version 1.171.41.106a. Rigaku Oxford Diffraction, 2021.
  38. Sheldrick G. M. // Acta Cryst. A. 2015. V. 71. № 1. P. 3. http://doi.org/10.1107/S2053273314026370
  39. Sheldrick G. M. // Acta Cryst. C. 2015. V. 71. № 1. P. 3. http://doi.org/10.1107/S2053229614024218
  40. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. № 2. P. 339. http://doi.org/10.1107/S0021889808042726
  41. Wedge T.J., Hawthorne M.F. // Coord. Chem. Rev. 2003. V. 240. № 1–2. P. 111. https://doi.org/10.1016/S0010-8545(02)00259-X
  42. Dolgushin F.M., Eremenko I.L. // Russ. Chem. Rev. 2021. V. 90. № 12. P. 1493. https://doi.org/10.1070/rcr4998
  43. Супоницкий К.Ю., Ануфриев С.А., Шмалько А.В., Сиваев И.Б. // Коорд. химия. 2023. Т. 50. № 5. С. 344.
  44. Morel P., Schaffer P., Britten J.F., Villiant J.F. // Acta Cryst. C. 2002. V. 58. № 12. P. m601. https://doi.org/10.1107/S0108270102020036
  45. Lee J.-D., Kim S.-J., Yoo D. et al. // Organometallics. 2000. V. 19. № 9. P. 1695. https://doi.org/10.1021/om990935s
  46. Zakharkin L.I., Bregadze V.I., Okhlobystin O.Yu. // J. Organomet. Chem. 1966. V. 6. № 3. P. 228. https://doi.org/10.1016/S0022–328X(00)88731–8
  47. Захаркин Л.И., Жигарева Г.Г., Казанцев А.В. // Журн. общ. химии. 1968. Т. 38. № 1. С. 89.
  48. Zakharkin L.I., Bregadze V.I., Okhlobystin O.Yu. // J. Organomet. Chem. 1965. V. 4. № 3. P. 211. https://doi.org/10.1016/S0022-328X(00)94161-5
  49. Глухов И.В., Лысенко К.А., Корлюков А.А., Антипин М.Ю. // Изв. Акад. наук. Сер. хим. 2005. № 3. С. 541
  50. https://doi.org/10.1107/S0108270194005809
  51. Lewis Z.G., Welch A.J. // Acta Cryst. C. 1993. V. 49. № 4. P. 705. https://doi.org/10.1107/S0108270192012125
  52. Robertson S., Ellis D., McGrath T.D. et al. // Polyhedron. 2003. V. 22. № 10. P. 1293.https://doi.org/10.1016/S0277–5387(03)00103–7
  53. Lee S., Shin J., Ko D.-H., Han, W.-S. // Chem. Commun. 2020. V. 56. № 84. P. 12741.https://doi.org/10.1039/D0CC04684A
  54. Fu M., Yuan S., Qu Q. et al. // New J. Chem. 2023. V. 47. № 47. P. 21714.https://doi.org/10.1039/D3NJ03491G

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Nota

Посвящается 125-летию со дня рождения академика А.Н. Несмеянова и 70-летию основания Института элементоорганических соединений Российской академии наук.


Declaração de direitos autorais © Russian Academy of Sciences, 2024