Spin properties of chiral SiC nanotubes
- Autores: Dyachkov P.N.1, Kulyamin P.A.1
-
Afiliações:
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Edição: Volume 69, Nº 9 (2024)
- Páginas: 1319-1328
- Seção: ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ
- URL: https://rjonco.com/0044-457X/article/view/676642
- DOI: https://doi.org/10.31857/S0044457X24090125
- EDN: https://elibrary.ru/JSOTRX
- ID: 676642
Citar
Resumo
Using the relativistic linearized augmented cylindrical waves technique, the dependences of the band structure of single-walled SiC nanotubes on spin and chirality were calculated. It has been established that nanotubes are the wide-gap semiconductors with Eg equal to 2.26–3.15 eV, and the spin-orbit splittings of the valence and conduction band edges lie in the range of 0.05–3.5 meV. The energies of the spin-orbit gaps in righthanded and lefthanded enantiomers coincide, but their spin directions are opposite. Chiral nanotubes are determined that are most suitable for selective spin transport with potentially high fluxes of α- and β-electrons in opposite directions.
Texto integral

Sobre autores
P. Dyachkov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Autor responsável pela correspondência
Email: p_dyachkov@rambler.ru
Rússia, Moscow, 119991
P. Kulyamin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: p_dyachkov@rambler.ru
Rússia, Moscow, 119991
Bibliografia
- Casady J.B., Johnson R.W. // Solid-State Electron. 1996. V. 39. P. 409. https://doi.org/10.1016/0038-1101(96)00045-7
- Katoh Y., Snead L.L., Henager C.H. Jr et al. // J. Nucl. Mater. 2014. V. 455. P. 387. https://doi.org/10.1016/j.nucmat.2014.06.003
- Properties of Silicon Carbide. INSPEC Institution of Electrical Engineers / Ed. Harris G.L. London, 1995.
- Xi G., Peng Y., Wang S. et al. // J. Phys. Chem. B. 2004. V. 108. P. 20102. https://doi.org/10.1021/jp0462153
- Wu R., Wu L., Yang G. et al. // J. Phys. D: Appl. Phys. 2007. V. 40. P. 3697. https://doi.org/10.1088/0022-3727/40/12/023
- Wang C., Huang N., Zhuang H. et al. // Surf. Coat. Technol. 2016. V. 299. P. 96. https://doi.org/10.1016/j.surfcoat.2016.04.070
- Sun L., Han C., Wu N. et al. // RSC Adv. 2018. V. 8. P. 13697. https://doi.org/10.1039/c8ra02164c
- Hollabaugh C.M., Hull D.E., Newkirk L.R. et al. // J. Mater. Sci. 1983. V. 18. P. 3190. https://doi.org/10.1007/BF00544142
- Zhu W.Z., Yan M. // Scripta Mater. 1998. V. 39. P. 1675. https://doi.org/10.1016/S1359-6462(98)00372-8
- Fan J., Li H., Wang J. et al. // Appl. Phys. Lett. 2012. V. 101. P. 131906. https://doi.org/10.1063/1.4755778
- Beke D., Szekrenyes Z., Czigany Z. et al. // Nanoscale. 2015. V. 7. P. 10982. https://doi.org/10.1039/c5nr01204j
- Lai H.L., Wong N.B., Zhou X.T. et al. // Appl. Phys. Lett. 2000. V. 76. P. 294. https://doi.org/10.1063/1.125636
- Deng S.Z., Wu Z.S., Zhou J. et al. // Chem. Phys. Lett. 2002. V. 356. P. 511. https://doi.org/10.1016/S0009-2614(02)00403-7
- Li Z., Zhang J., Meng A. et al. // J. Phys. Chem. B. 2006. V. 110. P. 22382. https://doi.org/10.1021/jp063565b
- Sun X.H., Li C.P., Wong W.K. et al. // J.Am. Chem. Soc. 2002. V. 124. P. 14464. https://doi.org/10.1021/ja0273997
- Taguchi T., Igawa N., Yamamoto H. et al. // J.Am. Ceram. Soc. 2009. V. 88. P. 459. https://doi.org/10.1111/j.1551-2916.2005.00066.x
- Taguchi T., Igawa N., Yamamoto H. et al. // Physica E. 2005. V. 28. P. 431. https://doi.org/10.1016/j.physe.2005.05.048
- Taguchi T., Yamamoto S., Ohba H. // Appl. Surf. Sci. 2021. V. 551. P. 149421. https://doi.org/10.1016/j.apsusc.2021.149421 25
- Huczko A., Bystrzejewski M., Lange H. et al. // J. Phys. Chem. B. 2005. V. 109. P. 16244. https://doi.org/10.1021/jp050837m
- Zhou W.M., Yang B., Yang Z.X. et al. // Appl. Sci. 2008. V. 252. P. 5143. https://doi.org/10.1007/978-0-387-74132-1_2
- Wang X., Liew K.M. // J. Phys. Chem. С. 2011. V. 115. P. 10388. https://doi.org/10.1021/jp2005937
- Han Z., Zhu H., Zou Y. et al. // Phys. 2022. V. 38. P. 105658. https://doi.org/10.1016/j.rinp.2022.105658
- Menon M., Richter E., Mavrandonakis A. et al. // Phys. Rev. B. 2004. V. 69. P. 115322. https://doi.org/10.1103/PhysRevB.69.115322
- Vatankhah C., Badehian H.A. // Optik (Stuttg.). 2021. V. 237. P. 166740. https://doi.org/10.1016/j.ijleo.2021.166740
- Huang S.P., Wu D.S., Hu J.M. et al. // Opt. Express. 2007. V. 15. P. 10947. https://doi.org/10.1364/OE.15.010947
- Petrushenko I.K., Ivanov N.A. // Mod. Phys. Lett. B. 2013. V. 27. P. 29. https://doi.org/10.1142/S0217984913502102
- Afshoon Z., Movlarooy T. // Silicon. 2023. V. 15. P. 4149. https://doi.org/10.1007/s12633-023-02314-9
- Wu A., Song Q., Yang L. et al. // Comput. Theor. Chem. 2011. V. 977. P. 92. https://doi.org/10.1016/j.comptc.2011.09.013
- Zhao M.W., Xia Y.Y., Zhang R.Q. et al. // J. Chem. Phys. 2005. V. 122. P. 214707. https://doi.org/10.1063/1.1927520
- Li F., Xia Y.Y., Zhao M.W. et al. // J. Appl. Phys. 2005. V. 97. P. 104311. https://doi.org/10.1063/1.1891281
- He T., Zhao M.W., Xia Y.Y. et al. // J. Chem. Phys. 2006.V. 125. P. 194710. https://doi.org/10.1063/1.2360269
- Song J., Liu H., Henry D.J. // Comput. Mater. Sci. 2016. V. 125. P. 117. https://doi.org/10.1016/j.commatsci.2016.08.029
- Alferi G., Kimoto T. // Nanotechnology. 2009. V. 20. P. 285703. https://doi.org/10.1088/0957-4484/20/28/285703
- Alfieri G., Kimoto T. // J. Comput. Theor. Nanosci. 2012. V. 9. P. 1850. https://doi.org/10.1166/jctn.2012.2596
- Talla J.A. // Phys. Lett., Sect. A: Gen. Solid State Phys. 2019. V. 383. P. 2076. https://doi.org/10.1016/j.physleta.2019.03.040
- Ding R., Yintang Y., Lianx L. // J. Semicond. 2009. V. 30. P. 114010. https://doi.org/10.1088/1674-4926/30/11/114010
- Itas Y.S., Suleiman A.B., Ndikilar C.E. et al. // Phys. Scr. 2023. V. 98. P. 015824. https://doi.org/10.1088/1402-4896/aca5cf
- Ansari R., Rouhi S., Aryayi M. et al. // Scientia Iranica. 2012. V. 19. P. 1984. https://doi.org/10.1016/j.scient.2012.10.004
- Setoodeh A.R., Jahanshahi M., Attariani H. // Comput. Mater. Sci. 2009. V. 47. P. 388. https://doi.org/10.1016/j.commatsci.2009.08.017
- Yang R., Hilder T.A., Chung S.H. et al. // J. Phys. Chem. С. 2011. V. 15. P. 17255. https://doi.org/10.1021/jp201882d
- Khademi M., Sahimi M. // J. Chem. Phys. 2011. V. 135. P. 204509. https://doi.org/10.1063/1.3663620
- Hilder T.A., Yang R., Gordon D. et al. // J. Phys. Chem. С. 2012. V. 116. P. 4465. https://doi.org/10.1021/jp2113335
- Yang S.H. // Appl. Phys. Lett. 2020. V. 116. P. 120502. https://doi.org/10.1063/1.5144921
- Yang S.H., Naaman R., Stuart P.Y. et al. // Nature Rev. Phys. 2021. V. 3. P. 328. https://doi.org/10.1038/s42254-021-00302-9
- Michaeli K., Kantor-Uriel N., Naaman R. et al. // Chem. Soc. Rev. 2016. V. 45. P. 6478. https://doi.org/10.1039/C6CS00369A
- Naaman R., Waldeck D.H. // Annu. Rev. Phys. Chem. 2015. V. 66. P. 263. https://doi.org/10.1146/annurev-physchem-040214-121554
- Yang S.H. // Appl. Phys. Lett. 2021. V. 16. P. 120502. https://doi.org/10.1063/5.0039147
- Waldeck D.H., Naaman R., Paltiel Y. // APL Mater. 2021. V. 9. P. 040902. https://doi.org/10.1063/5.0049150
- Wang X., Changjiang Y., Felser C. // Adv. Mater. 2024. V. 36. P. 230874. https://doi.org/10.1002/adma.202308746
- D’yachkov P.N. // Quantum chemistry of nanotubes: electronic cylindrical waves. London: Taylor and Francis, 2019. 212 p.
- D’yachkov P.N., Makaev D.V. // Phys. Rev. B. 2007. V. 76. P. 19541. https://doi.org/10.1103/PhysRevB.76.195411
- D’yachkov P.N., Makaev D.V. // Int. J. Quantum Chem. 2016. V. 116. P. 316. https://doi.org/10.1002/qua.25030
- D’yachkov P.N., D’yachkov E.P. // Appl. Phys. Lett. 2022. V. 120. P. 173101. https://doi.org/10.1063/5.0086902
- D’yachkov E.P., D’yachkov P.N. // J. Phys. Chem. С. 2019. V. 123. P. 26005. https://doi.org/10.1021/acs.jpcc.9b07610
- D’yachkov P.N., Krasnov D.O. // Chem. Phys. Lett. 2019. V. 720. P. 15. https://doi.org/10.1016/j.cplett.2019.02.006
- D’yachkov P.N. // J. Nanotechnol. Smart Mater. 2023. V. 9. P. 1208. https://doi.org/10.1109/5.771073
- Manchon A, Koo H.C., Nitta J. et al. // Nature Mater. 2015. V. 871. P. 4360. https://doi.org/10.1038/nmat4360
- Yeom J. // Acc. Mater. Res. 2021. V. 2. P. 471. https://doi.org/10.1021/accountsmr.1c00059
- Bercioux D., Lucignano P. // Rep. Prog. Phys. 2015. V. 78. P. 106001. https://doi.org/10.1088/0034-4885/78/10/106001
- Yan B. arXiv:2312.03902v1. 2023. https://doi.org/10.48550/arXiv.2312.03902
- Ray K., Ananthavel S.P., Waldeck D.H. et al. // Science.1999. V. 283. P. 814. https://doi.org/10.1126/science.283.5403.8
- Göhler B., Hamelbeck V., Markus T.Z. et al. // Science. 2011. V. 331. P. 894. https://doi.org/10.1126/science.1199339
- Yeganeh S., Ratner M.A., Medina E. et al. // J. Chem. Phys. 2009. V. 131. P. 014707. https://doi.org/10.1063/1.3167404
- Eremko A.A., Loktev V.M. // Phys. Rev. B. 2013. V. 88. P. 165409. https://doi.org/10.1103/PhysRevB.88.165409
- Gutierrez R., Díaz E., Naaman R. // Phys. Rev. B. 2012. V. 85. P. 081404. https://doi.org/10.1103/PhysRevB.85.081404
- Gutierrez R., Díaz E., Gaul C. et al. // J. Phys. Chem. С. 2013. V. 117. P. 22276. https://doi.org/10.1021/jp401705x
- Naaman R., Paltiel Y., Waldeck D.H. // Acc. Chem. Res. 2020. V. 53. P. 2659. https://doi.org/10.1021/acs.accounts.0c00485
- Michaeli K., Naaman R. // J. Phys. Chem. С. 2019. V. 123. P. 17043. https://doi.org/10.1021/acs.jpcc.9b05020
- Naaman R., Paltiel Y., Waldeck D.H. // J. Phys. Chem. Lett. 2020. V. 11. P. 3660. https://doi.org/10.1021/acs.jpclett.0c00474
- Fransson J. // J. Phys. Chem. Lett. 2019. V. 10. P. 7126. https://doi.org/10.1021/acs.jpclett.9b02929
- Fransson J. // J. Phys. Chem. Lett. 2022. V. 13. P. 808. https://doi.org/10.1021/acs.jpclett.1c03925
Arquivos suplementares
