Hydrothermal Synthesis and Photocatalytic Prореrties of Iron-Doped Tungsten Oxide

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Substitutional solid solutions of the general formula h-W1–xFexO3, where 0.01 ≤ x ≤ 0.06, crystallizing in the hexagonal system based on h-WO3, were obtained using the hydrothermal synthesis method. It was shown that the crystal lattice of the synthesized compounds h-W1–xFexO3 is stabilized by NH4+ cations in hexagonal channels. Using quantum chemical calculations, it has been proven that doping with iron is realized by replacing cations in the tungsten sublattice, and not by intercalation into lattice channels. In this case, the dopant is not an independent participant in reactions involving h-W1–xFexO3, causing only the reorganization of the near-Fermi states of the h-WO3 matrix. It has been established that the region of solid solution homogeneity with respect to the dopant ion is determined by the pH of the working solution. The largest specific surface area, equal to 108 m2/g, has h-W0.94Fe0.06O3, synthesized at pH 2.3. Its photoactivity when applied to 1,2,4-trichlorobenzene is several times higher than that of m-W0.94Fe0.06O3.

全文:

受限制的访问

作者简介

G. Zakharova

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: volkov@ihim.uran.ru
俄罗斯联邦, Ekaterinburg

N. Podvalnaya

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: volkov@ihim.uran.ru
俄罗斯联邦, Ekaterinburg

T. Gorbunova

Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Email: volkov@ihim.uran.ru
俄罗斯联邦, Ekaterinburg

M. Реrvоva

Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Email: volkov@ihim.uran.ru
俄罗斯联邦, Ekaterinburg

A. Enyashin

Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: volkov@ihim.uran.ru
俄罗斯联邦, Ekaterinburg

参考

  1. Cole B., Marsen B., Miller E. et al. // J. Phys. Chem. C. 2008. V. 112. № 13. P. 5213. https://doi.org/10.1021/ jp077624c
  2. Huang Z.-F., Song J., Pan L. et al. // AdV. Mater. 2015. V. 27. № 36. P. 5309. https://doi.org/10.1002/adma.201501217
  3. Филиппова А.Д., Румянцев А.А., Баранчиков А.Е. и др. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 706.
  4. Zeng F., Wang J., Liu W. et al. // Electrochim. Acta. 2020. V. 334. P. 135641. https://doi.org/10.1016/j.electacta.2020.135641
  5. Ueda T., Maeda T., Huang Z. // Sens. Actuators, B: Chem. 2018. V. 273. P. 826. https://doi.org/10.1016/j.snb.2018.06.122
  6. Wen R., Granqvist C.G., Niklasson G.A. // Nature Mater. 2015. V. 14. № 10. P. 996. https://doi.org/10.1038/nmat4368
  7. Purushothaman K.K., Muralidharan G., Vijayakumar S. // Mater. Lett. 2021. V. 296. P. 129881. https://doi.org/10.1016/j.matlet.2021.129881
  8. Razali N.A.M., Salleh W.N.W., Aziz F. et al. // J. Clean. Prod. 2021. V. 309. P. 127438. https://doi.org/10.1016/j.jclepro.2021.127438
  9. Peleyeju M.G., Viljoen E.L. // J. Water Process Eng. 2021. V. 40. P. 101930. https://doi.org/10.1016/j.jwpe.2021.101930
  10. Desseignea M., Dirany N., Chevallier V., Arab M. // Appl. Surf. Sci. 2019. V. 483. P. 313. https://doi.org/10.1016/j.apsusc.2019.03.269
  11. Liang Y., Yang Y., Zou C. et al. // J. Alloys Compd. 2019. V. 783. P. 848. https://doi.org/10.1016/j.jallcom.2018.12.384
  12. Hernandez-Uresti D.B., Sánchez-Martínez D., Martínez-de la Cruz A. et al. // Ceram. Int. 2014. V. 40. № 3. P. 4767. https://doi.org/10.1016/j.ceramint.2013.09.022
  13. Zakharova G.S., Podval’naya N.V., Gorbunova T.I. et al. // J. Alloys Compd. 2023. V. 938. P. 168620. https://doi.org/10.1016/j.jallcom.2022.168620
  14. Dutta V., Sharma S., Raizada P. et al. // J. Environ. Chem. Eng. 2021. V. 9. № 1. P. 105018. https://doi.org/10.1016/j.jece.2020.10501
  15. Yuju S., Xiujuan T., Dongsheng S. et al. // Ecotoxicol. Environ. Saf. 2023. V. 259. P. 114988. https://doi.org/10.1016/j.ecoenv.2023.114988
  16. Козлов Д.А., Козлова Т.О., Щербаков А.Б. и др. // Журн. неорган. химии. 2020. Т. 65. № 7. С. 1088.
  17. Kozlov D.A., Kozlova T.O, Shcherbakov A.B. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 7. P. 1003. https://doi.org/10.1134/S003602362007013X
  18. Govindaraj T., Mahendran C., Marnadu R. et al. // Ceram. Int. 2021. V. 47. № 3. P. 4267. https://doi.org/10.1016/j.ceramint.2020.10.004
  19. Govindaraj T., Mahendran C., Chandrasekaran J. et al. // J. Phys. Chem. Solids. 2022. V. 170. P. 110908. https://doi.org/10.1016/j.jpcs.2022.110908
  20. Захарова Г.С., Подвальная Н.В., Горбунова Т.И., Первова М.Г. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 435.
  21. Shandilya P., Sambyal S., Sharma R. et al. // J. Hazard. Mater. 2022. V. 428. P. 128218. https://doi.org/10.1016/j.jhazmat.2022.128218
  22. Samuel O., Othman M.H.D., Kamaludin R. et al. // Ceram. Int. 2022. V. 48. № 5. P. 5845. https://doi.org/10.1016/j.ceramint.2021.11.158
  23. Murillo-Sierra J.C., Hernández-Ramírez A., Hinojosa-Reyes L., Guzmán-Mar J.L. // Chem. Eng. J. AdV. 2021. V. 5. P. 100070. https://doi.org/10.1016/j.ceja.2020.100070
  24. Shannow R.D. // Acta Crystallogr., Sect. A: Found. Crystallogr. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S0567739476001551
  25. Renitta А., Vijayalakshmi K. // Catal. Commun. 2016. V. 73. P. 58. https://doi.org/10.1016/j.catcom.2015.10.014
  26. Sheng C., Wang C., Wang H. et al. // J. Hazard. Mater. 2017. V. 328. P. 127. https://doi.org/10.1016/j.jhazmat.2017.01.018
  27. Shen Y., Shou J., Chen L. et al. // Appl. Catal., A: General. 2022. V. 643. P. 118739. https://doi.org/10.1016/j.apcata.2022.118739
  28. Zhang Z., Had M., Wen Z. et al. // Appl. Surf. Sci. 2018. V. 434. P. 891. https://doi.org/10.1016/j.apsusc.2017.10.074
  29. Ilager D., Seo H., Shetti N.P., Kalanur S.S. // J. Environ. Chem. Eng. 2020. V. 8. № 6. P. 104580. https://doi.org/10.1016/j.jece.2020.104580
  30. Rajalakshmi R., Sivaselvam S., Ponpandian N. // Mater. Lett. 2021. V. 304. P. 130664. https://doi.org/10.1016/j.matlet.2021.130664
  31. Ma G., Chen Z., Chen Z. et al. // Mater. Today Eng. 2017. V. 3. P. 45. http://dx.doi.org/10.1016/j.mtener.2017.02.003
  32. Laxmi V., Kumar А. // Mater. Sci. Semicond. Process. 2019. V. 104. P. 104690. https://doi.org/10.1016/j.mssp.2019.104690
  33. Mehmood F., Iqbal J., Jan T., Mansoor Q. // J. Alloys Compd. 2017. V. 728. P. 1329. http://dx.doi.org/10.1016/j.jallcom.2017.08.234
  34. Gao H., Zhu L., Peng X. et al. // Appl. Surf. Sci. 2022. V. 592. P. 153310. https://doi.org/10.1016/j.apsusc.2022.153310
  35. Song H., Li Y., Lou Z. et al. // Appl. Catal. B: Environ. 2015. V. 166−167. P. 112. http://dx.doi.org/10.1016/j.apcatb.2014.11.020
  36. Merajin M.T., Nasiri M., Abedini E., Sharifnia S. // J. Environ. Chem. Eng. 2018. V. 6. № 5. P. 6741. https://doi.org/10.1016/j.jece.2018.10.037
  37. Ordejón P., Artacho E., Soler J.M. // Phys. Rev. B. 1996. V. 53. № 16. P. R10441(R). https://doi.org/10.1103/PhysRevB.53.R10441
  38. García A., Papiore N., Akhtar A. et al. // J. Chem. Phys. 2020. V. 152. № 20. P. 204108. https://doi.org/10.1063/5.0005077
  39. Patterson A.L. // Phys. Rev. Lett. 1939. V. 56. P. 978.
  40. Al-Kuhaili M.F., Drmosh Q.A. // Mater. Chem. Phys. 2022. V. 281. P. 125897. https://doi.org/10.1016/j.matchemphys.2022.125897
  41. Wang H., Zhang L., Zhou Y. et al. // Appl. Catal. B: Environ. 2020. V. 263. P. 118331. https://doi.org/10.1016/j.apcatb.2019.118331
  42. Sing K.S.W., Everett D.H., Haul R.A.W. et al. // Pure Appl. Chem. 1985. V. 57. № 4. P. 603. https://doi.org/10.1351/pac198557040603
  43. Thöny A., Rossi M.J. // J. Photochem. Photobiol. A. 1997. V. 104. № 1−3. P. 25. https://doi.org/10.1016/S1010-6030(96)04575-3
  44. Фаттахова З.А., Вовкотруб Э.Г., Захарова Г.С. // Журн. неорган. химии. 2021. Т. 66. № 1. С. 41.
  45. Fattakhova Z.A., Vovkotrub E.G., Zakharova G.S. // Russ. J. Inorg. Chem. 2021. V. 66. № 1. P. 35. https://doi.org/10.1134/S0036023621010022

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Diffractograms of tungsten oxide powders doped with iron(III), composition h-W1–xFexO3, synthesized at pH 1.7(a) and x = 0.01 (1), 0.03 (2), 0.05 (3), at pH 2.3 (b) and x = 0.01 (1), 0.03 (2), 0.06 (3). Calculated diffractograms and difference curves are additionally presented for samples with the maximum content of the dopant ion. The vertical lines indicate the positions of reflexes

下载 (378KB)
3. Fig. 2. Concentration dependences of unit cell parameters a(a), c(b), V(c) for WO3 doped with iron(III) synthesized at pH 1.7 (1) and 2.3 (2)

下载 (113KB)
4. Fig. 3. SEM images of h-W0.95Fe0.05O3 (a) and h-W0.94Fe0.06O3 (b) synthesized at pH 1.7 and 2.3. X-ray energy dispersion microanalysis spectrum for sample h-W0.94Fe0.06O3 (c). An additional peak from carbon is caused by the substrate, used to fix the sample

下载 (604KB)
5. Fig. 4. IR (a) and Raman spectra (b) of h-WO3 (1), h-W0.95Fe0.05O3 (2) and h-W0.94Fe0.06O3 (3) synthesized at pH 1.7 and 2.3, respectively. Vaseline oil strips are marked with an asterisk

下载 (231KB)
6. Fig. 5. TG, DSC, and MS curves for h-W0.95Fe0.05O3 (a) and h-W0.94Fe0.06O3 (b) synthesized at pH 1.7 and 2.3, respectively

下载 (205KB)
7. Fig. 6. Electronic state densities (ED) calculated by the DFT method for h-WO3 and h-W1–xFexO3 with model compositions (NH4)0.33WO3 · 0.33H2O(a) and (NH4)0.50W0.95Fe0.05O3 · 0.33H2O (b) respectively

下载 (243KB)
8. Fig. 7. Sorption isotherms (1 — adsorption, 2 — desorption) and pore size distribution curves (inserts) h-W0.95Fe0.05O3 (a) and h-W0.94Fe0.06O3 (b) obtained at pH 1.7 and 2.3, respectively

下载 (225KB)
9. Fig. 8. Absorption spectra in the UV and visible ranges (a), dependences (ahv)1/2 on the photon energy (E) in the region of the absorption edge (b) for h-WO3 (1), h-W0.99Fe0.01O3 (2), h-W0.97Fe0.03O3 (3) and h-W0.94Fe0.06O3 (4) synthesized at pH 2.3

下载 (271KB)
10. Supplementary
下载 (241KB)

版权所有 © Russian Academy of Sciences, 2024