On phosphine-containing gold(I) complexes in solutions in connection with their biological applications

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Some transformations involving AuCl(PPh3) in CH3CN/H2O solution are considered and a comparison is made with known data for auranofin. Interaction with GSH leads to the formation of a binuclear (GSH)[Au(PPh3)]2 (at CGSH/CAu < 0.5) or mononuclear Au(GSH)(PPh3) (CGSH/CAu > 0.5) complex; PPh3 substitution is not observed. Interaction with BSA leads to Cl– substitution. A cyclic voltammetry study showed the presence of several peaks of irreversible oxidation of AuCl(PPh3) and complexes with GSH.

全文:

受限制的访问

作者简介

I. Mironov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: imir@niic.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

V. Kharlamova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: imir@niic.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

D. Kal’nyi

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: imir@niic.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

参考

  1. Dey D., Al-Hunaiti A., Gopal V. et al. // J. Mol. Struct. 2020. V. 1222. P. 128919. https://doi.org/10.1016/j.molstruc.2020.128919
  2. Корман Д.Б., Островская Л.А., Кузьмин В.А. // Вопросы онкологии. 2018. Т. 64. № 6. С. 697. https://doi.org/10.37469/0507-3758-2018-64-6-697-707
  3. Yeo C.I., Ooi K.K., Tiekink E.R.T. // Molecules. 2018. V. 23. P. 1410. https://doi.org/10.3390/molecules23061410
  4. Van der Westhuizen D., Bezuidenhout D.I., Munro O.Q. // Dalton Trans. 2021. V. 50. P. 17413. https://doi.org/10.1039/d1dt02783b
  5. Radisavljević S., Petrović B. // Front. Chem. 2020. V. 8. P. 379. https://doi.org/10.3389/fchem.2020.00379
  6. Yang Z., Jiang G., Xu Z. et al. // Coord. Chem. Rev. 2020. V. 423. P. 213492. https://doi.org/10.1016/j.ccr.2020.213492
  7. Lu Y., Ma X., Chang X. et al. // Chem. Soc. Rev. 2022. V. 51. P. 5518. https://doi.org/10.1039/d1cs00933h
  8. Zhang J., Li Y., Fang R. et al. // Front. Pharmacol. 2022. V. 13. P. 979951. https://doi.org/10.3389/fphar.2022.979951
  9. Shaw III C.F. // Chem. Rev. 1999. V. 99. P. 2589. https://doi.org/10.1021/cr980431o
  10. Bryan D.L.B., Mikuriya Y., Hempel J.C. et al. // Inorg. Chem. 1987. V. 26. P. 4180. https://doi.org/10.1021/ic00272a009
  11. Roberts J.R., Xiao J., Schliesman B. et al. // Inorg. Chem. 1996. V. 35. P. 424. https://doi.org/10.1021/ic9414280
  12. Keter F.K., Guzei I.A., Nell M. et al. // Inorg. Chem. 2014. V. 53. P. 2058. https://doi.org/10.1021/ic4025926
  13. Kim J.H., Reeder E., Parkin S., Awuah S.G. // Sci. Rep. 2019. V. 9. P. 12335. https://doi.org/10.1038/s41598-019-48584-5
  14. Landini I., Lapucci A., Pratesi A. et al. // Oncotarget 2017. V. 8. P. 96062. https://doi.org/10.18632/oncotarget.21708
  15. Walz D.T., DiMartino M.J., Griswold D.E. et al. // Am. J. Med. 1983. V. 75. P. 90. https://doi.org/10.1016/0002-9343(83)90481-3
  16. Chrysouli M.P., Banti C.N., Kourkoumelis N. et al. // J. Inorg. Biochem. 2018. V. 179. P. 107. https://doi.org/10.1016/j.jinorgbio.2017.11.004
  17. Кращенко Т.Г., Введенский А.В., Бобринская Е.В., Кулешова Н.Е. // Конденсированные среды и межфазные границы. Т. 16. № 1. С. 42.
  18. Obradors C., Echavarren A.M. // Chem. Commun. 2014. V. 50. P. 16. https://doi.org/10.1039/c3cc45518a
  19. Mézailles N., Ricard L., Gagosz F. // Org. Lett. 2005. V. 7. P. 4133. https://doi.org/10.1021/ol0515917
  20. Křikavová R., Hošek J., Vančo J. et al. // PLoS One. 2014. 9(9): e107373. https://doi.org/10.1371/journal.pone.0107373
  21. Caruso F., Rossi M., Tanski J. et al. // J. Med. Chem. 2003. V. 46. P. 1737. https://doi.org/10.1021/jm0204690
  22. Dickson P.N., Wehrli A., Geier G. // Inorg. Chem. 1988. V. 27. P. 2921. https://doi.org/10.1021/ic00290a006
  23. Shaw III C.F., Isab A.A., Hoeschele J.D. et al. // J. Am. Chem. Soc. 1994. V. 116. P. 2254. https://doi.org/10.1021/ja00085a003
  24. Hormann-Arendt A.L., Shaw III C.F. // Inorg. Chem. 1990. V. 29. P. 4683. https://doi.org/10.1021/ic00348a019
  25. Hormann-Arendt A.L., Shaw III C.F., Bennett D.W., Reiff W.M. // Inorg. Chem. 1986. V. 25. P. 3953. https://doi.org/10.1021/ic00242a025
  26. Ahmad S. // Coord. Chem. Rev. 2004. V. 248. P. 231. https://doi.org/10.1016/j.cct.2003.10.015
  27. Белеванцев В.И., Пещевицкий Б.И. Исследование сложных равновесий в растворе. Новосибирск: Наука, 1978. 254 с.
  28. Albert A., Brauckmann C., Blaske F. et al. // Anal. At. Spectrom. 2012. V. 27. P. 975. https://doi.org/10.1039/C2JA30109A
  29. Mironov I.V., Kharlamova V.Yu. // J. Solution Chem. 2020. V. 49. P. 583. https://doi.org/10.1007/s10953-020-00994-0
  30. Миронов И.В., Харламова В.Ю. // Журн. неорган. химии. 2017. Т. 62. № 7. С. 1008. https://doi.org/10.7868/S0044457X17070157
  31. Mironov I.V., Kharlamova V.Yu. // J. Solution Chem. 2018. V. 47. P. 511. https://doi.org/10.1007/s10953-018-0735-y
  32. Coffer M.T., Shaw III C.F., Eidsness M.K. et al. // Inorg. Chem. 1986. V. 25. P. 333. https://doi.org/10.1021/ic00223a020
  33. Rakhimov R.D., Butin K.P., Grandberg K.I. // J. Organomet. Chem. 1994. V. 464. P. 253. https://doi.org/10.1016/0022-328X(94)87282-1
  34. Anderson J.E., Sawtelle S.M., McAndrews C.E. // Inorg. Chem. 1990. V. 29. P. 2627. https://doi.org/10.1021/ic00339a020
  35. Mohamed A.A., Bruce A.E., Bruce M.R. // The chemistry of organic derivatives of gold and silver / Eds. Patai S., Rappoport Z. John Wiley & Sons, 1999. P. 313.
  36. Garusinghe G.S.P., Bessey S.M., Aghamoosa M. et al. // Inorganics. 2015. V. 3. P. 40. https://doi.org/10.3390/inorganics3010040
  37. Garusinghe G.S.P., Bessey S.M., Bruce A.E., Bruce M.R.M. // Dalton Trans. 2016. V. 45. P. 11261. https://doi.org/10.1039/c6dt01400c
  38. Coffer M.T., Shaw III C.F., Hormann A.L. et al. // J. Inorg. Biochem. 1987. V. 30. P. 177. https://doi.org/10.1016/0162-0134(87)80062-4
  39. Mironov I.V., Kharlamova V.Yu. // ChemistrySelect. 2023. V. 8. P. e202301337. https://doi.org/10.1002/slct.202301337
  40. Миронов И.В., Харламова В.Ю. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1495. https://doi.org/10.31857/S0044457X23600639
  41. Pacheco E.A., Tiekink E.R.T., Whitehouse M.W. Gold Chemistry: Applications and Future Directions in the Life Sciences. Ch. 6: Gold Compounds and Their Applications in Medicine. WILEY-VCH Verlag GmbH & Co, 2009. P. 304. https://doi.org/10.1002/9783527626724.ch6
  42. Kimura E., Kurogi Y., Koike T. et al. // J. Coord. Chem. 1993. V. 28. P. 33. https://doi.org/10.1080/00958979308035142
  43. Gabbiani C., Casini A., Messori L. // Gold Bull. 2007. V. 40. P. 73. https://doi.org/10.1007/BF03215296
  44. Che C.-M., Sun R.W.-Y., Yu W.-Y. et al. // Chem. Commun. 2003. P. 1718. https://doi.org/10.1039/b303294a
  45. Jamin M.E., Ivamoto R.T. // Inorganica Chim. Acta. 1978. V. 27. P. 135. https://doi.org/10.1016/S0020-1693(00)87273-4
  46. Berners-Price S.J., Sadler P.J. // Phosphines and metal phosphine complexes: relationship of chemistry to anticancer and other biological activity in structure and bonding. 1988. V. 70. P. 27. https://doi.org/10.1007/3-540-50130-4_2

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Change in the UV spectrum of AuCl(PPh3) solution in 50% AN with the addition of GSH (pH 7.4, l = 1 cm). CAu = 1.34 × 10-4 M, CGSH (10-5 M): 0 (1); 3.2 (2); 6.4 (3); 9.6 (4); 12.8–230 (5). Spectrum 6 – PPh3 (9.11 × 10-5 M) (a). Change in A/lCAu at λ = 260 nm. CAu (10-4 M): 1.34 (Δ), 0.52 (O). 1 is the calculated curve, 2 is the estimated change for mononuclear forms, 3 is the estimated change for the binuclear form, l = 1 cm (b).

下载 (281KB)
3. Fig. 2. The change in the UV spectrum of the solution during the interaction of AuCl(PPh3) with cysteine. CAu = 1.34 × 10-4 M, CCys (10-4 M): 0 (1); 0.35 (2); 0.67 (3); 1.0–12 (4). pH 7.4, 50% AN, l = 1 cm.

下载 (71KB)
4. Fig. 3. Color-grams of solutions containing AuCl(PPh3) (CAu = 1.0 × 10-3 M) and GSH. CGSH/CAu: 0 (1); 0.4/1 (2); 0.9/1 (3). Dependences (4) and (5) relate to solutions of GSH and PPh3 (C = 1.0 × 10-3 M). All solutions contain 0.1 M LiClO4, AN (80%), H2O (20%). a is 1 × 10-3 M HCl, b is 1 × 10-3 M HClO4. E relative to the Ag+/Ag electrode, the scanning speed is 100 mV/s.

下载 (134KB)
5. Fig. 4. Changes in UV spectra during the interaction of AuCl(PPh3) with BSA (1%) in AN (37%) in the presence of Cys (2.0 × 10-4 M). 1 – 1% BSA; 2 – 1% BSA + 1.0 × 10-4 M AuCl(PPh3) τ = 0; 3 – 1.0 × 10-4 M AuCl(PPh3) without BSA; 4-7 – A2–A1 difference spectra for τ (min) after mixing: 0 (4), 10 (5), 30 (6), 60 (7), l = 0.2 cm.

下载 (68KB)
6. Scheme 1.

下载 (17KB)

版权所有 © Russian Academy of Sciences, 2024