ATOMIC LAYER DEPOSITION AlMoxOy OF FILMS USING ALUMINUM TRICHLORIDE OR TRIMETHYLALUMINIUM AND QUANTUM CHEMICAL CALCULATIONS OF GROWTH, REDUCTION AND CONVERSION PROCESSES

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

A comparative analysis of the surface processes of atomic layer deposition (ALD) of AlMoxOy using H2O, molybdenum (VI) oxydichloride (MoO2Cl2), trimethylaluminium (Al(CH3)3, TMA) or aluminum chloride (AlCl3) was carried out. The difference between AlMoxOy's ALD processes was the use of TMA or AlCl3 as an aluminum precursor. XPS analysis of the deposited films revealed that the molybdenum content was lower than the aluminum content. Molybdenum in the oxidation state of Mo+6 and reduced forms of molybdenum (Mo+5 and Mo+4) were also found in the films; the ratio of the atomic concentration of Mo+6 to Mo+5 and Mo+4 in the case of the TMA process was 0.76 : 1, and in the case of AlCl3 — 6.3 : 1. The replacement of TMA with AlCl3 in the AlMoxOy ALD process has significantly reduced the amount of reduced Mo in films. To evaluate the thermodynamic parameters of film growth reactions, molybdenum reduction, and MoOx to AlOx conversion for ALD using AlCl3 and TMA, quantum chemical calculations using the DFT method were performed. According to the calculated data, AlMoxOy ALD using TMA is more thermodynamically advantageous in comparison with AlCl3 due to the greater reactivity of TMA.

作者简介

S. Gadzhimuradov

Dagestan State University; The Institute of Geothermal and Renewable Energy Problems

Email: gadjimuradov.sadr1@gmail.com
a branch of the Federal State Budgetary Institution of Science of the United Institute of High Temperatures of the Russian Academy of Sciences Makhachkala, Russia; Makhachkala, Russia

S. Etnisheva

Dagestan State University

Email: gadjimuradov.sadr1@gmail.com
Makhachkala, Russia

A. Maksumova

Dagestan State University

Email: gadjimuradov.sadr1@gmail.com
Makhachkala, Russia

S. Suleymanov

Institute of Physics of the Dagestan Federal Research Center of the Russian Academy of Sciences

Email: gadjimuradov.sadr1@gmail.com
Makhachkala, Russia

I. Abdulagatov

Dagestan State University; The Institute of Geothermal and Renewable Energy Problems

Email: gadjimuradov.sadr1@gmail.com

a branch of the Federal State Budgetary Institution of Science of the United Institute of High Temperatures of the Russian Academy of Sciences

Makhachkala, Russia; Makhachkala, Russia

A. Abdulagatov

Dagestan State University

编辑信件的主要联系方式.
Email: gadjimuradov.sadr1@gmail.com
Makhachkala, Russia

参考

  1. Magkoev T.T., Mustafaeva D.G., Zadlishvili V.B. et al. // Materials. 2022. V. 15. P. 2245. https://doi.org/10.3390/ma15062245
  2. Харамирова Р.Н., Зайдман Н.М., Плясова Л.М. и др. // Кинетика и катализ. 1973. Т. 14. № 6. С. 1538.
  3. Haber J. The Role of Molybdenum in Catalysis / London: Climax Molybdenum Co., 1981. 479 p.
  4. Dondi M., Matteucci F., Baldi G. et al. // Dyes Pigm. 2008. V. 76. № 1. P. 179. https://doi.org/10.1016/j.dyepig.2006.08.021
  5. Davis B.E., Strandwitz N.C. // IEEE J. Photovolt. 2020. V. 10. № 3. P. 722. https://doi.org/10.1109/jphotov.2020.2973447
  6. Chowdhury S., Khokhar M.Q., Pham D.Ph. et al. // ECS J. Solid State Sci. Technol. 2022. V. 11. № 1. P. 015004. https://doi.org/10.1149/2162-8777/ac4d83
  7. Erdemir A.A. // Tribol. Lett. 2000. V. 8. № 2–3. P. 97. https://doi.org/10.1023/A:1019183101329
  8. Erdemir A.A. // Surf. Coat. Technol. 2005. V. 200. № 5–6. P. 1792. https://doi.org/10.1016/j.surfcoat.2005.08.054
  9. Matsumoto Y., Shimanouchi R. // Procedia Eng. 2016. V. 148. P. 158. https://doi.org/10.1016/j.proeng.2016.06.507
  10. Малахова А.А. // Изв. СПбГТИ (ТУ). Т. 1. № 27. С. 14.
  11. Кольцов С.И., Алесковский В.Б. // Журн. физ. химии. 1968. Т. 42 С. 1210
  12. Алесковский В.Б. // Журн. прикл. химии. 1974. Т. 47. № 10. С. 2145.
  13. Алесковский В.Б. Химия надмолекулярных соединений: Учеб. пособие. СПб.: Изд-во С.-Петербургского университета, 1996. 256 с.
  14. Малахова А.А., Малков А.А., Соснов Е.А. // Журн. неорган. химии. 2024. Т. 69, № 3. С. 294. https://doi.org/10.31857/s0044457x24030046
  15. Popov G., Mattinen M., Vibervaara A. et al. // J. Vac. Sci. Technol. A. 2025. Vol. 43. № 3. P. 030801. https://doi.org/10.1116/6.0004320
  16. George S.M. // Chem. Rev. 2010. V. 110. P. 111. https://doi.org/10.1021/cr900056b
  17. Максумова А.М., Бодалёв Н.С., Сулейманов С.И. и др. // Неорган. материалы. 2023. Т. 59. № 4. С. 384. https://doi.org/10.31857/S0002337X2304005X
  18. Максумова А.М., Бодалёв Н.С., Абдуласатов Н.М. и др. // Журн. неорган. химии. 2024. Т. 69. С. 110
  19. Maksumova A.M., Bodalev I.S., Gadzhimuradov S.G. et al. // Russ. J. Appl. Chem. 2024. V. 97. № 7. P. 595. https://doi.org/10.1134/S1070427224070024
  20. De Castro I.A., Datta R.S., Ou J.Z. et al. // Adv. Mater. 2017. V. 29. № 40. P. 1701619. https://doi.org/10.1002/adma.201701619
  21. Етмишева С.С., Гаджимурадов С.Г., Максумова А.М. и др. // Тезисы докл. конференции Кузнецовские чтения–2024, Новосибирск. 2024. С. 21.
  22. Neese F., Wennmohs F., Becker U. et al. // J. Chem. Phys. 2020. V. 152. P. 224108. https://doi.org/10.1063/5.0004608.21
  23. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 1396. https://doi.org/10.1103/PhysRevLett.77.3865
  24. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297. https://doi.org/10.1039/b508541a
  25. Гаджимурадов С.Г., Сулейманов С.И., Максумова А.М. и др. // Изв. вузов. Химия и хим. технология. 2023. Т. 68. № 3. С. 50. https://doi.org/10.6060/rvkt.20256803.7132
  26. Дроздов Е.О., Гукова А.Н., Дубровенский С.Д. et al. // Журн. общ. химии. 2016. Т. 86. С. 1551. https://doi.org/10.36807/1998-9849-2022-63-89-35-44
  27. Baltrusaitis J., Mendoza-Sanchez B., Fernandez V. et al. // Appl. Surf. Sci. 2015. V. 326. P. 151. https://doi.org/10.1016/j.apsusc.2014.11.077
  28. Choi J.G., Thompson L.T. // Appl. Surf. Sci. 1995. V. 93. № 2. P. 143. https://doi.org/10.1016/0169-4332(95)00317-7
  29. Clayton C.R., Lu Y.C // Surf. Interface Anal. 1989. V. 14. № 1–2. P. 66.
  30. Етмишева С.С., Максумова А.М., Гаджимурадов С.Г. и др. // Тезисы докл. XV Конференции молодых ученых по общей и неорганической химии ИОНХ РАН. Москва, 2025 г. С. 109.
  31. Oh I., Sandoval T.E., Liu T., et al. // J. Am. Chem. Soc. 2022. V. 144. № 26. P. 11757. https://doi.org/10.1021/jacs.2c03752
  32. Juppo M., Alen P., Riihelä M. et al. // Chem. Vap. Deposition. 2001. V. 7. № 5. P. 211. https://doi.org/10.1002/1521-3862(200109)7:5<211::AID-CVDE211>3.0.CO;2-L

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025