[]

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

С целью создания материалов с высоким массовым содержанием водорода, пригодных для использования в системах электроснабжения мобильных устройств на основе топливных элементов, выполнен синтез и проведено исследование свойств хранения и генерации водорода для композита на основе диаммиакатов боргидридов магния и цинка. Синтез выполнен методом механохимической обработки смеси Mg(BH4)2(NH3)2/Zn(BH4)2(NH3)2 в мольном соотношении 1:1. Образцы были проанализированы с использованием современных методов анализа: РФА, ИК-спектроскопии, СТА и РФЭС. Проведено термическое разложение композита и обнаружено снижение температуры выделения водорода по сравнению с исходными диаммиакатами. Кроме того, результаты исследования показали, что механизм реакции термического разложения композитов отличается от механизмов термолиза исходных комплексов.

About the authors

V. P. Vasiliev

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of RAS; Hydrogen Energy Center (PAO AFK Sistema)

Email: vvp@icp.ac.ru
142432, Московская обл., г. Черноголовка, пр. Академика Семенова, д. 1; 142432, Московская обл., г. Черноголовка, пр. Академика Семенова, д. 3

O. V. Kravchenko

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of RAS; Hydrogen Energy Center (PAO AFK Sistema)

Email: vvp@icp.ac.ru
142432, Московская обл., г. Черноголовка, пр. Академика Семенова, д. 1; 142432, Московская обл., г. Черноголовка, пр. Академика Семенова, д. 3

M. V. Solovev

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of RAS

Email: vvp@icp.ac.ru
142432, Московская обл., г. Черноголовка, пр. Академика Семенова, д. 1

G. V. Shilov

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of RAS

Email: vvp@icp.ac.ru
142432, Московская обл., г. Черноголовка, пр. Академика Семенова, д. 1

A. V. Shikhovtsev

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of RAS; Hydrogen Energy Center (PAO AFK Sistema)

Email: vvp@icp.ac.ru
142432, Московская обл., г. Черноголовка, пр. Академика Семенова, д. 1; 142432, Московская обл., г. Черноголовка, пр. Академика Семенова, д. 3

A. A. Zaytsev

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of RAS

Email: vvp@icp.ac.ru
142432, Московская обл., г. Черноголовка, пр. Академика Семенова, д. 1

Y. A. Dobrovolsky

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of RAS; Hydrogen Energy Center (PAO AFK Sistema)

Author for correspondence.
Email: vvp@icp.ac.ru
142432, Московская обл., г. Черноголовка, пр. Академика Семенова, д. 1; 142432, Московская обл., г. Черноголовка, пр. Академика Семенова, д. 3

References

  1. Huang Y., Cheng Y., Zhang J. A review of high density solid hydrogen storage materials by pyrolysis for promising mobile applications // Ind. Eng. Chem. Res. 2021. V. 60. P. 2737‒2771. https://doi.org/10.1021/acs.iecr.0c04387
  2. Züttel A., Wenger P., Rentsch S., Sudan P., Mauron Ph., Emmenegger Ch. LiBH4 a new hydrogen storage material // J. Power Sources. 2003. V. 118. P. 1–7. https://doi.org/10.1016/S0378-7753(03)00054-5
  3. Abdalla A. M., Hossain S., Nisfindy O. B., Azad A. T., Dawood M., Azad A. K. Hydrogen production, storage, transportation and key challenges with applications: A review // Energy Convers Manage. 2018. V. 165. P. 602‒627. doi.org/10.1016/j.enconman.2018.03.088
  4. Ouyang L., Chen K., Jiang J., Yang X.-S., Zhu M. Hydrogen storage in light-metal based systems: A review // J. Alloys Compd. 2020. V. 829. P. 154597. https://doi.org/10.1016/j.jallcom.2020.154597
  5. Staubitz A., Robertson A. P. M., Manners I. Ammonia-borane and related compounds as dihydrogen sources // Chem. Rev. 2010. V. 110. P. 4079–4124. https://doi.org/10.1021/cr100088b
  6. Hirscher M., Yartys V. A., Baricco M., von Colbe J. B., Blanchard D., Bowman R. C. Jr., Broom D. P., Buckley C. E., Chang F., Chen P., Cho Y. W., Crivello J.-C., Cuevas F., David W. I. F., de Jongh P. E., Denys R. V., Dornheim M., Felderhoff M., Filinchuk Y., Froudakis G. E., Zlotea C. J. Materials for hydrogen-based energy storage — past, recent progress and future outlook // J. Alloys Compd. 2020. V. 827. P. 153548. https://doi.org/10.1016/j.jallcom.2019.153548
  7. Архангельский И. В., Кравченко О. В., Цветков М. В., Добровольский Ю. А., Шиховцев А. В., Соловьев М. В., Зайцев А. А. Синтез и особенности термолиза дигидрата боргидрида натрия // ЖПХ. 2019. Т. 92. № 6. С. 703‒711. https://doi.org/10.1134/S0044461819060021 [Arkhangelʹsky I. V., Kravchenko O. V., Tsvetkov M. V., Dobrovolʹsky Yu. A., Shikhovtsev A. V., Solovev M. V., Zaitsev A. A. Synthesis of sodium borohydride dihydrate and specific features of its thermolysis // Russ. J. Appl. Chem. 2019. V. 92. N 6. P. 734–742. https://doi.org/10.1134/S1070427219060028].
  8. Wu R., Ren Z., Zhang X., Lu Y., Li H., Gao M., Pan H., Liu Y. Nanosheet-like lithium borohydride hydrate with 10 wt % hydrogen release at 70 °C as a chemical hydrogen storage candidate // J. Phys. Chem. Lett. 2019. V. 10. P. 1872–1877. https://doi.org/10.1021/acs.jpclett.9b00416
  9. Zhu Y., Shen S., Yang X.-S., Zeng L., Tsui G., Xu Z.-L., Zhou Q., Tang R., Chan K. C. Role of rare-earth alloys in lithium borohydride regeneration from hydrous lithium metaborate // ACS Sustain. Chem. Eng. 2023. V. 11. P. 8931–8938. https://doi.org/10.1021/acssuschemeng.3c01073
  10. Guo Y., Yu X., Sun W., Sun D., Yang W. The hydrogen-enriched Al–B–N system as an advanced solid hydrogen-storage candidate // Angew. Chem. Int. Ed. 2011. V. 50. P. 1087–1091. https://doi.org/10.1002/anie.201006188
  11. Chu H., Wu G., Xiong Z., Guo J., He T., Chen P. Structure and hydrogen storage properties of calcium borohydride diammoniate // Chem. Mater. 2010. V. 22. P. 6021–6028. https://doi.org/10.1021/cm1023234
  12. Vasiliev V. P., Kravchenko O. V., Soloviev M. V., Zyubin A. S., Zyubina T. S., Zaytsev A. A., Shikhovtsev A. V., Blinova L. N., Dobrovolsky Y. A. Synthesis, properties and thermal decomposition particularities of magnesium borohydride ammoniates // Int. J. Hydrogen Energy. 2022. V. 47. P. 35320–35328. https://doi.org/10.1016/j.ijhydene.2022.08.100
  13. Соловьев М. В., Васильев В. П., Шилов Г. В., Кравченко О. В., Зайцев А. А., Шиховцев А. В., Добровольский Ю. A., Булычев Б. М. Синтез, уточнение свойств и структур монокристаллических ди- и триаммиакатных комплексов боргидрида магния // Изв. АН. Сер. хим. 2024. Т. 73. № 4. С. 906‒916. https://doi.org/10.1007/s11172-024-4204-z [Solovev M. V., Vasiliev V. P., Shilov G. V., Kravchenko O. V., Zaytsev A. A., Shikhovtsev A. V., Dobrovolsky Y. A., Bulychev B. M. Synthesis of single-crystal di- and triammine complexes of magnesium borohydride. Refinement of structures and properties // Russ. Chem. Bull. 2024. V. 73. P. 906–916. https://doi.org/10.1007/s11172-024-4204-z].
  14. Зюбин А. С., Зюбина Т. С., Кравченко О. В., Соловьев М. В., Васильев В. П., Зайцев А. А., Шиховцев А. В., Добровольский Ю. А. Квантово-химическое моделирование отщепления молекулярного водорода от диаммиаката борогидрида магния // ЖНХ. 2024. T. 69. № 6. С. 853‒865. https://doi.org/10.31857/S0044457X24060071 [Zyubin A. S., Zyubina T. S., Kravchenko O. V., Solovev M. V., Vasiliev V. P., Zaytsev A. A., Shikhovtsev A. V., Dobrovolsky Y. A. Quantum–chemical simulation of molecular hydrogen abstraction from magnesium borohydride diammoniate // Russ. J. Inorg. Chem. 2024. V. 69. P. 867–878. https://doi.org/10.1134/S0036023624600874].
  15. Guo Y., Jiang Y., Xia G., Yu X. Ammine aluminium borohydrides: An appealing system releasing over 12 wt % pure H2 under moderate temperature // Chem. Commun. 2012. V. 48. P. 4408–4410. https://doi.org/10.1039/c2cc30751k
  16. Wang K., Zhang J.-G., Lang X.-Q. The mechanism of controllable dehydrogenation: CPMD study of M(BH4)x(NH3)y (M = Li, Mg) decomposition // Phys. Chem. Chem. Phys. 2016. V. 18. P. 7015–7018. https://doi.org/10.1039/C5CP06808H
  17. Johnson S. R., David W. I., Royse D. M. Sommariva M., Tang C. Y., Fabbiani F. P., Jones M. O., Edwards P. P. The monoammoniate of lithium borohydride, Li(NH3)BH4: An effective ammonia storage compound // Chem. Asian. J. 2009. V. 4. P. 849–854. https://doi.org/10.1002/asia.200900051
  18. Gu Q., Guo L., Gao Y., Tan Y. B., Tang Z., Wallwork K. S., Zhang F., Yu X. Structure and decomposition of zinc borohydride ammonia adduct: Towards a pure hydrogen release // Energy Env. Sci. 2012. V. 5. P. 7590–7600. https://doi.org/10.1039/C2EE02485C
  19. Soloveichik G., Her J.-H., Stephens P. W., Gao Y., Rijssenbeek J., Andrus M., Zhao J.-C. Ammine magnesium borohydride complex as a new material for hydrogen storage: Structure and properties of Mg(BH4)2·2NH3 // Inorg. Chem. 2008. V. 47. P. 4290–4298. https://doi.org/10.1021/ic7023633
  20. Wang K., Zhang J.-G., Jiao J.-S., Zhang T., Zhou Z.-N. A first-principles study: Structure and decomposition of mono-/bimetallic ammine borohydrides // J. Phys. Chem. C. 2014. V. 118. P. 8271–8279. https://doi.org/10.1021/jp5012439
  21. Chen X., Yuan F., Tan Y., Tang Z., Yu X. Improved dehydrogenation properties of Ca(BH4)2·nNH3 (n = 1, 2, and 4) combined with Mg(BH4)2 // J. Phys. Chem. C. 2012. V. 116. P. 21162–21168. https://doi.org/10.1021/jp302866w
  22. Guo Y., Wu H., Zhou W., Yu X. Dehydrogenation tuning of ammine borohydrides using double-metal cations // J. Am. Chem. Soc. 2011. V. 133. P. 4690–4693. https://doi.org/10.1021/ja1105893
  23. Wang M., Ouyang L., Peng C., Zhu X., Zhu W., Shao H., Zhu M. Synthesis and hydrolysis of NaZn(BH4)3 and its ammoniates // J. Mater. Chem. A. 2017. V. 5. P. 17012–17020. https://doi.org/10.1039/C7TA05082H
  24. Wu D., Ouyang L., Liu J., Wang H., Shao H., Zhu M. Hydrogen generation properties and hydrolysis mechanism of Zr(BH4)4·8NH3 // J. Mater. Chem. A. 2017. V. 5. P. 16630–16635. https://doi.org/10.1039/C7TA04308B
  25. Gradisek A., Jepsen L. H., Jensen T. R., Conradi M. S. Nuclear magnetic resonance study of molecular dynamics in ammine metal borohydride Sr(BH4)2(NH3)2 // J. Phys. Chem. C. 2016. V. 120. P. 24646–24654. https://doi.org/10.1021/acs.jpcc.6b08162
  26. Emdadi A., Demir S., Kislak Y., Tekin A. Computational screening of dual-cation metal ammine borohydrides by density functional theory // J. Phys. Chem. C. 2016. V. 120. P. 13340–13350. https://doi.org/10.1021/acs.jpcc.6b01833
  27. Huang J., Tan Y., Su J., Gu Q., Černy R., Ouyang L., Sun D., Yu X., Zhu M. Synthesis, structure and dehydrogenation of zirconium borohydride octaammoniate // Chem. Commun. 2015. V. 51. P. 2794–2797. https://doi.org/doi.org/10.1039/C4CC09317H
  28. Huang J., Ouyang L., Gu Q., Yu X., Zhu M. Metal-borohydride-modified Zr(BH4)4·8NH3: Low-temperature dehydrogenation yielding highly pure hydrogen // Chem. Eur. J. 2015. N 21. P. 14931–14936. https://doi.org/10.1002/chem.201501461
  29. Zhao S., Xu B., Sun N., Sun Z., Zeng Y., Meng L. Improvement in dehydrogenation performance of Mg(BH4)2·2NH3 doped with transition metal: First-principles investigation // Int. J. Hydr. Energy. 2015. V. 40. P. 8721–8731. https://doi.org/10.1016/j.ijhydene.2015.05.023
  30. Кравченко О. В., Кравченко С. Е., Семененко С. Е. Аммиакаты боргидридов металлов // Журн. общ. химии. 1990. Т. 60. С. 2641–2660.
  31. Hoffmann R. Extended Hückel theory. III. Compounds of boron and nitrogen // J. Chem. Phys. 1964. V. 40. P. 2474‒2480. https://doi.org/10.1063/1.1725550
  32. Morrison C. A., Siddick M. M. Dihydrogen bonds in solid BH3NH3 // Angew. Chem. Int. Ed. 2004. V. 43. P. 4780–4782. https://doi.org/10.1002/anie.200460096
  33. Ravnsbæk D., Filinchuk Y., Cerenius Y., Jakobsen H. J., Besenbacher F., Skibsted J., Jensen T. R. A series of mixed-metal borohydrides // Angew. Chem. Int. Ed. 2009. V. 48. P. 6659–6663. https://doi.org/10.1002/anie.200903030
  34. Nickels E. A., Jones M. O., David W. I. F., Johnson S. R., Lowton R. L., Sommariva M., Edwards P. P. Tuning the decomposition temperature in complex hydrides: Synthesis of a mixed alkali metal borohydride // Angew. Chem. Int. Ed. 2008. V. 47. P. 2817–2819. https://doi.org/10.1002/anie.200704949
  35. Lindemann I., Ferrer R. D., Dunsch L., Filinchuk Y., Cěrný R., Hagemann H., DʹAnna V., Daku L. M. L., Schultz L., Gutfleisch O. Tuning the decomposition temperature in complex hydrides: Synthesis of a mixed alkali metal borohydride // Chem. Eur. J. 2010. V. 16. P. 8707–8712. https://doi.org/10.1002/chem.201000831
  36. Fang Z. Z., Kang X. D., Wang P., Li H. W., Orimo S. I. Unexpected dehydrogenation behavior of LiBH4/Mg(BH4)2 mixture associated with the in situ formation of dual-cation borohydride // J. Alloys Compd. 2010. V. 491. P. L1–L4. https://doi.org/10.1016/j.jallcom.2009.10.149
  37. Cěrný R., Severa G., Ravnsbæk D. B., Filinchuk Y., DʹAnna V., Hagemann H., Haase D., Jensen C. M., Jensen T. R. NaSc(BH4)4: A novel scandium-based borohydride // J. Phys. Chem. C. 2010. V. 114. P. 1357–1364. https://doi.org/10.1021/jp908397w
  38. Hagemann H., Longhini M., Kaminski J. W., Wesolowski T. A., Cěrný R., Penin N., Sørby M. H., Hauback B. C., Severa G., Jensen C. M. LiSc(BH4)4: A novel salt of Li+ and discrete Sc(BH4)4 complex anions // J. Phys. Chem. C. 2008. V. 112. P. 7551–7555. https://doi.org/10.1021/jp803201q
  39. Aidhy D. S., Wolverton C. First-principles prediction of phase stability and crystal structures in Li-Zn and Na-Zn mixed-metal borohydrides // Phys. Rev. B. 2011. V. 83. P. 144111. https://doi.org/10.1103/PhysRevB.83.144111
  40. Černy R., Kim K. C., Penin N., DʹAnna V., Hagemann H., Sholl D. S. AZn2(BH4)5 (A = Li, Na) and NaZn(BH4)3: Structural studies // J. Phys. Chem. C. 2010. V. 114. P. 19127–19133. https://doi.org/10.1021/jp105957r
  41. Ravnsbæk D. B., Frommen C., Reed D., Filinchuk Y., Sorby M., Hauback B. C., Jakobsen H. J., Book D., Besenbacher F., Skibsted J., Jensen T. R. Structural studies of lithium zinc borohydride by neutron powder diffraction, Raman and NMR spectroscopy // J. Alloys Compd. 2011. V. 509. P. S698–S704. https://doi.org/10.1016/j.jallcom.2010.11.008
  42. Fang Z. Z., Kang X. D., Luo J. H., Wang P., Li H. W., Orimo S. Formation and hydrogen storage properties of dual-cation (Li, Ca) borohydride // J. Phys. Chem. C. 2010. V. 114. P. 22736–22741. https://doi.org/10.1021/jp109260g
  43. Pat. 1,070,148. BRD (publ. 1959). Die Darstellung von Zn(NH3)4(BH4)2 und Cd(NH3)6(BH4)2.
  44. Мякишев К. Г., Горбачева И. И., Потапова О. Г., Волков В. В. О взаимодействии хлорида цинка с тетрагидроборатами щелочных металлов // Изв. СО АН СССР. 1989. Вып. 4. C. 50–55.
  45. Степин Б. Д. Техника лабораторного эксперимента в химии / Учеб. пособие для вузов. М.: Химия, 1999. 600 c. ISBN 5-7245-0955-5
  46. Vasiliev V. P., Solovev M. V., Kravchenko O. V., Zyubin A. S., Zyubina T. S., Shikhovtsev A. V., Zaytsev A. A., Dobrovolsky Y. A. Magnesium borohydride monoammine as hydrogen storage: Structure and pathway analysis for the thermal decomposition reaction // J. Alloys Compd. 2024. V. 1008. P. 176732. https://doi.org/10.1016/j.jallcom.2024.176738
  47. Li J. S., Zhang C. R., Li B., Cao F., Wang S. Q. Boron nitride coatings by chemical vapor deposition from borazine // Surf. Coat. Technol. 2011. V. 205. P. 3736–3741. https://doi.org/10.1016/j.surfcoat.2011.01.032
  48. Li Y., Liu Y., Zhang X., Zhou D., Lu Y., Gao M., Pan H. An ultrasound-assisted wet-chemistry approach towards uniform Mg(BH4)2·6NH3 nanoparticles with improved dehydrogenation properties // J. Mater. Chem. A. 2016. V. 54. P. 8366–8373. https://doi.org/10.1039/C6TA02944B.
  49. Santoni A., Vetrella U., Celentano G., Gambardella U., Mancini A. X-ray photoemission study of MgB2 films synthesized from in-situ annealed MgB2/Mg multilayers // Appl. Phys. A. 2007. V. 86. P. 485–490. https://doi.org/10.1007/s00339-006-3790-y
  50. Höche D., Blawert C., Cavellier M., Busardo D., Gloriant T. Magnesium nitride phase formation by means of ion beam implantation technique // Appl. Surf. Sci. 2011. V. 257. P. 5626–5633. https://doi.org/10.1016/j.apsusc.2011.01.061
  51. Qu J., Li Q., Luo C., Cheng J., Hou X. Characterization of flake boron nitride prepared from the low temperature combustion synthesized precursor and its application for dye adsorption // Coatings. 2018. V. 8. P. 214. https://doi.org/10.3390/coatings8060214
  52. Solís R. R., Quintana M. A., Blázquez G., Calero M., Muñoz-Batista M. J. Ruthenium deposited onto graphitic carbon modified with boron for the intensified photocatalytic production of benzaldehyde // Catal. Today. 2023. V. 423. P. 114266. https://doi.org/10.1016/j.cattod.2023.114266
  53. Zhang B., Wu Q., Yu H., Bulin C., Sun H., Li R. Ge X., Xing R. High-efficient liquid exfoliation of boron nitride nanosheets using aqueous solution of alkanolamine // Nanoscale Res. Lett. 2017. V. 12. P. 596. https://doi.org/10.1186/s11671-017-2366-4
  54. Liang H., Jia L., Ji S., Ma S., Linkov V., Chen F. Mesoporous N-doped carbon with atomically dispersed Zn-Nx active sites as high-performance cathode in lithium-oxygen batteries // Ionics. 2021. V. 27. P. 4695–4704. https://doi.org/10.1007/s11581-021-04217-4
  55. Lin J.-H., Huang Y.-J., Su Y.-P., Liu C.-A., Devan R. S., Ho C.-H., Wang Y.-P., Lee H.-W., Chang C.-M., Liou Y., Ma Y.-R. Room-temperature wide-range photoluminescence and semiconducting characteristics of two-dimensional pure metallic Zn nanoplates // RSC Advances. 2012. V. 2. P. 2123–2127. https://doi.org/10.1039/C2RA00972B
  56. Li F., Ding X.-B., Cao Q.-C., Qin Y.-H., Wang C. A ZIF-derived hierarchically porous Fe–Zn–N–C catalyst synthesized via a two-stage pyrolysis for the highly efficient oxygen reduction reaction in both acidic and alkaline media // Chem. Commun. 2019. V. 55. P. 13979‒13982. https://doi.org/10.1039/C9CC07489A
  57. Sobola D., Kaspar P., Částková K., Dallaev R., Papež N., Sedlák P., Trčka T., Orudzhev F., Kaštyl J., Weiser A., Knápek A., Holcman V. PVDF fibers modification by nitrate salts doping // Polymers. 2021. V. 13. P. 2439. https://doi.org/10.3390/polym13152439

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences