Optimization of the Reachable Set of a Linear System with Respect to Another Set

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Given a linear controlled autonomous system, we consider the problem of including a convex compact set in the reachable set of the system in the minimum time and the problem of determining the maximum time when the reachable set can be included in a convex compact set. Additionally, the initial point and the time at which the extreme time is achieved in each problem are determined. Each problem is discretized on a grid of unit vectors and is then reduced to a linear programming problem to find an approximate solution of the original problem. Additionally, error estimates for the solution are found. The problems are united by a common ideology going back to the problem of finding the Chebyshev center.

作者简介

M. Balashov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: balashov73@mail.ru
117997, Moscow, Russia

R. Kamalov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: balashov73@mail.ru
117997, Moscow, Russia

参考

  1. Liapounoff A.A. Sur les fonctions-vecteurs completement additives // Izv. Akad. Nauk SSSR Ser. Mat. 1940. V. 4. № 6. P. 465–478.
  2. Lee E.B., Markus L. Foundations of Optimal Control Theory, John Wiley; 1st Printing, ed. 1967, 588 p.
  3. Aumann R. Integrals of set-valued functions // J. Math. Anal. Appl. 1965. V. 12. № 1. P. 1–12.
  4. Polyak B.T., Smirnov G. Large deviations for non-zero initial conditions in linear systems // Automatica. 2016. V. 74. P. 297–307.
  5. Aubin J.-P., Cellina A. Differential inclusions, Springer-Verlag, 1984.
  6. Aubin J.-P. A Survey of viability theory // SIAM J. Control and Optimizat. 1990. V. 28. № 4. P. 749–788.
  7. Kelley H.J. Gradient theory of optimal flight paths // ARSJ. 1960. V. 30. P. 947–953.https://doi.org/10.2514/8.5282
  8. Bryson A.E., Denham W.F. A steepest-ascent method for solving optimum programming problems // J. Appl. Mech. 1962. V. 29. P. 247–257; https://www.gwern.net/docs/ai/1962-bryson.pdf
  9. Eichmeir Ph., Lau Th., Oberpeilsteiner S., Nachbagauer K., Steiner W. The adjoint method for time-optimal control problems // J. Comput. Nonlinear Dynam. 2021. V. 16. № 2. P. 021003 (12 pages).https://doi.org/10.1115/1.404880810.1115/1.4048808
  10. Cannarsa P., Sinestrari C. Convexity properties of the minimum time function // Calcul. Variat. Part. Different. Equat. 1995. V. 3. № 3. P. 273–298; https://doi.org/10.1007/bf01189393
  11. Boltyanskii V.G. Mathematical methods of optimal control, Holt, Rinehart and Winston (1st ed.), 1971.
  12. Половинкин Е.С. Сильно выпуклый анализ // Матем. сб. 1996. Т. 187. № 2. С. 103–130.
  13. Le Guernic C., Girard A. Reachability analysis of linear systems using support functions // Nonlinear Analysis: Hybrid Systems. 2010. V. 4. P. 250–262.
  14. Althoff M., Frehse G., Girard A. Set propagation techniques for reachability analysis // Ann. Rev. Control, Robotics, and Autonomous Systems, Ann. Rev. 2021. V. 4. № 1. hal-03048155.https://doi.org/10.1146/annurev-control-071420-081941
  15. Serry M., Reissig G. Over-approximating reachable tubes of linear time-varying systems, arXiv:2102.04971v1.
  16. Kurzhanski A.B., Varaiya P. Dynamics and control of trajectory tubes, ser. Systems and Control: Foundations and Applications. Birkhauser/Springer, 2014, theory and computation.
  17. Балашов М.В. Покрытие множества выпуклым компактом: оценки погрешности и вычисление // Матем. заметки. 2022. Т. 112. № 3. С.337–349.
  18. Дистель Дж. Геометрия банаховых пространств, Киев, Вища школа, 1980.
  19. Frankowska H., Olech C. R-convexity of the integral of the set-valued functions, Contributions to analysis and geometry, Johns Hopkins Univ. Press, Baltimore, MD, 1981. P. 117–129.
  20. Половинкин Е.С., Балашов М.В. Элементы выпуклого и сильно выпуклого анализа, М., Физматлит, 2007. 2-е изд.
  21. Балашов М.В., Половинкин Е.С. -сильно выпуклые подмножества и их порождающие множества // Матем. сб. 2000. Т. 191. № 1. С. 27–64.
  22. Balashov M.V. On polyhedral approximations in an -dimensional space // Comput. Math. Math. Phys. 2016. V. 56. № 10. P. 1679–1685.
  23. Balashov M.V., Repovs D. Polyhedral approximations of strictly convex compacta // J. Math. Anal. Appl. 2011. V. 374. P. 529–537.
  24. Балашов М.В. Сильная выпуклость множеств достижимости линейных систем // Матем. сб. 2022. Т. 213. № 5. С. 30–49.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (434KB)
3.

下载 (518KB)
4.

下载 (770KB)
5.

下载 (614KB)

版权所有 © М.В. Балашов, Р.А. Камалов, 2023