On a Particular Solution of the σ-Commutation Problem () for Toeplitz and Hankel Matrices

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A unified approach is proposed to the construction of matrix pairs (T,H) that solve the ‑commutation problem for Toeplitz and Hankel matrices. For a certain particular case, a family of solutions is derived.

About the authors

V. N. Chugunov

Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences

Email: chugunov.vadim@gmail.com
ul. Gubkina, 8, 119333, Moscow, Russia

Kh. D. Ikramov

Moscow Lomonosov State University, Faculty of Computational Mathematics and Cybernetics

Author for correspondence.
Email: ikramov@cs.msu.su
Lenin Hills, 119992, Moscow, Russia

References

  1. Guterman A.E., Markova O.V., Mehrmann V. Length realizability for pairs of quasi-commuting matrices // Li-near Algebra and Appl. 2019. V. 568. P. 135–154.
  2. Kassel C. Quantum Groups, Grad. Texts in Math. V. 155. New York: Springer-Verlag, 1995.
  3. Manin Yu.I. Quantum Groups and Non-commutative Geometry. Montréal: CRM, 1988.
  4. Chriss N., Ginzburg V. Representation Theory and Complex Geometry. Boston, Basel, Berlin: Birkhäuser, 1997.
  5. Чугунов В.Н. О некоторых множествах пар -коммутирующих () теплицевой и ганкелевой матриц // Численные методы и вопросы организации вычислений. XXXII, Зап. научн. сем. ПОМИ. Т. 482, ПОМИ, СПб. 2019. С. 288–294 .
  6. Гельфгат В.И. Условия коммутирования тёплицевых матриц // Ж. вычисл. матем. и матем. физ. 1998. Т. 38. № 1. С. 11–14.
  7. Чугунов В.Н. Нормальные и перестановочные тёплицевы и ганкелевы матрицы. М.: Наука, 2017.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 В.Н. Чугунов, Х.Д. Икрамов