On a Particular Solution of the σ-Commutation Problem () for Toeplitz and Hankel Matrices
- Authors: Chugunov V.N.1, Ikramov K.D.2
-
Affiliations:
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences
- Moscow Lomonosov State University, Faculty of Computational Mathematics and Cybernetics
- Issue: Vol 63, No 11 (2023)
- Pages: 1817-1828
- Section: General numerical methods
- URL: https://rjonco.com/0044-4669/article/view/664945
- DOI: https://doi.org/10.31857/S0044466923110108
- EDN: https://elibrary.ru/AGKHZR
- ID: 664945
Cite item
Abstract
A unified approach is proposed to the construction of matrix pairs (T,H) that solve the ‑commutation problem for Toeplitz and Hankel matrices. For a certain particular case, a family of solutions is derived.
Keywords
About the authors
V. N. Chugunov
Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences
Email: chugunov.vadim@gmail.com
ul. Gubkina, 8, 119333, Moscow, Russia
Kh. D. Ikramov
Moscow Lomonosov State University, Faculty of Computational Mathematics and Cybernetics
Author for correspondence.
Email: ikramov@cs.msu.su
Lenin Hills, 119992, Moscow, Russia
References
- Guterman A.E., Markova O.V., Mehrmann V. Length realizability for pairs of quasi-commuting matrices // Li-near Algebra and Appl. 2019. V. 568. P. 135–154.
- Kassel C. Quantum Groups, Grad. Texts in Math. V. 155. New York: Springer-Verlag, 1995.
- Manin Yu.I. Quantum Groups and Non-commutative Geometry. Montréal: CRM, 1988.
- Chriss N., Ginzburg V. Representation Theory and Complex Geometry. Boston, Basel, Berlin: Birkhäuser, 1997.
- Чугунов В.Н. О некоторых множествах пар -коммутирующих () теплицевой и ганкелевой матриц // Численные методы и вопросы организации вычислений. XXXII, Зап. научн. сем. ПОМИ. Т. 482, ПОМИ, СПб. 2019. С. 288–294 .
- Гельфгат В.И. Условия коммутирования тёплицевых матриц // Ж. вычисл. матем. и матем. физ. 1998. Т. 38. № 1. С. 11–14.
- Чугунов В.Н. Нормальные и перестановочные тёплицевы и ганкелевы матрицы. М.: Наука, 2017.
Supplementary files
