EFFICIENT AND STABLE TIME INTEGRATION OF THE CAHN-HILLARD EQUATIONS: EXPLICIT, IMPLICIT, AND EXPLICIT-ITERATIVE SCHEMES
- Authors: Botchev M.A1, Fakhurdinov I.A1,2, Savenkov E.B1
-
Affiliations:
- Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
- National Research Nuclear University “Moscow Engineering Physics Institute”
- Issue: Vol 64, No 8 (2024)
- Pages: 1366-1387
- Section: General numerical methods
- URL: https://rjonco.com/0044-4669/article/view/665030
- DOI: https://doi.org/10.31857/S0044466924080034
- EDN: https://elibrary.ru/YBFTGQ
- ID: 665030
Cite item
Abstract
The article proposes a new algorithm for numerical integration over time of the Cahn-Hilliard equation, based on the combined application of the Eyre splitting method and the local iteration modified (LIM) scheme for solving a finite-dimensional problem at each time step. The proposed method is gradient-stable and allows calculations with large time steps and has an explicit nature of calculations. The results of numerical calculations are presented, demonstrating the capabilities of the proposed method and its comparison with common methods of time integration of the Cahn– Hilliard equation.
About the authors
M. A Botchev
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
Email: botchev@kiam.ru
Moscow, Russia
I. A Fakhurdinov
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences; National Research Nuclear University “Moscow Engineering Physics Institute”
Email: mv1451003@gmail.com
Moscow, Russia
E. B Savenkov
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
Email: savenkov@keldysh.ru
Moscow, Russia
References
- Cahn J.W., Hilliard J.E. Free Energy of a Nonuniform System. I. Interfacial Free Energy // J. Chemic. Phys. 1958. V 28. № 2. P 258-267. https://doi.Org/10.1063/1.1744102
- Gurtin M.E. Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance // Physica D: Nonlinear Phenomena.1996. V. 92. Iss. 3-4. P. 178-192. https://doi.org/10.1016/0167-2789(95)00173-5
- Provatas N., Elder K. Phase-Field Methods in Materials Science and Engineering. First published:7 October 2010 https://doi.org/10.1002/97835276315202010 Wiley-VCH Verlag GmbH & Co. KGaA
- Steinbach I., Salama H. Lectures on Phase Field. Springer Cham, 2023. https://doi.org/10.1007/978-3-031-21171-3
- Скрипов В.П., Скрипов А.В. Спинодальный распад (Фазовый переход с участием неустойчивых состояний) // УФН. 1979. Т. 128. Вып. 2. С. 193-231. https://doi.org/10.3367/UFNr.0128.197906a.0193
- Hohenberg P.C., Halperin B.I. Theory of dynamic critical phenomena // Rev. Mod. Phys. 177. V. 49. Iss. 3. P. 435. https://doi.org/10.1103/RevModPhys.49.435
- Penrose O., Fife P.C. Thermodynamically consistent models of phase-field type for the kinetic of phase transitions // Physica D: Nonlinear Phenomena. 1990. V. 43. Iss. 1. P. 44-62. https://doi.org/10.1016/0167-2789(90)90015-H
- Bray A.J. Theory of phase-ordering kinetics // Adv. Phys. 2002. V. 51. № 2. P. 481-587. https://doi.org/10.1080/00018730110117433
- Miranville A. The Cahn-Hilliard Equation: Recent Advances and Applications // Soc. Indust. Appl. Math. 2019. https://doi.org/10.1137/1.9781611975925
- Pego R.L. Front Migration in the Nonlinear Cahn-Hilliard Equation // Proceed. Royal Soc. London. Ser. A. Math. Phys. Sci. 1989. V. 422. № 863. P. 261-278. www.jstor.org/stable/2398477
- Bates P.W., Fife P.C The Dynamics of Nucleation for the Cahn-Hilliard Equation // SIAM J. Appl. Math. 1993. V. 53. № 4. P. 990-1008. www.jstor.org/stable/2102259
- de Mello E.V.L., Otton Teixeira da Silveira Filho Numerical study of the Cahn-Hilliard equation in one, two and three dimensions // Physica A: Statistic. Mech. Appl. 2005. V. 347. P. 429-443. https://doi.org/10.1016/j.physa.2004.08.076
- Vollmayr-Lee B.P., Rutenberg A.D. Fast and accurate coarsening simulation with an unconditionally stable time step // Phys. Rev. E. 2003. V. 68. Iss. 6. P. 066703. https://doi.org/10.1103/PhysRevE.68.066703
- Eyre D.J. An unconditionally stable one-step scheme for gradient systems // Tech. Rep. Department of Mathematics, University of Utah. 1997. unpublished. https://api.semanticscholar.org/CorpusID:117273508
- Eyre D.J. Unconditionally gradient stable time marching the Cahn-Hilliard equation // Comput. Math. Model. Microstructur. Evolut. Mater. Res. Soc. Symp. Proc. Ed. V. 529. Bullard J.W., Chen L.-Q., Kalia R.K., Stoneham A.M., 1998. P. 39-46.
- Tierra G., Guillen-Gonzalez F. Numerical methods for solving the Cahn-Hilliard equation and its applicability to related Energy-based models // Necas Center for Math. Model. Preprint № 2013-035.
- Cueto-Felgueroso L., Peiraire J. A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations // J. Comput. Phys. 2008. V. 227. Iss. 4. P. 9985-10017. https://doi.org/10.1016/j.jcp.2008.07.024
- Li Y., Choi Y., Kim J. Computationally efficient adaptive time step method for the Cahn-Hilliard equation // Comput. Math. Appl. 2017. V. 73. Iss. 8. P. 1855-1864. https://doi.org/10.1016/j.camwa.2017.02.021
- Zhang Z., Qiao Z. An Adaptive Time-Stepping Strategy for the Cahn-Hilliard Equation // Comm. Computat. Phys. 2012. V. 11. Iss.4. P. 1261-1278. https://doi.org/10.4208/cicp.300810.140411s
- Minkoff S.E., Kridler N.M. A comparison of adaptive time stepping methods for coupled flow and deformation modeling // Appl. Math. Model. 2006. V. 30. Iss. 9. P. 993-1009. https://doi.org/10.1016/j.apm.2005.08.002
- Luo F., Tang T., Xie H. Parameter-Free Time Adaptivity Based on Energy Evolution for the Cahn-Hilliard Equation // Comm. Computa. Phys. 2016. V 19. Iss. 5. P 1542—1563. https://doi.org/10.4208/cicp.scpde14.45s
- Guillen-Gonzalez F., Tierra G. Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models // Computers and Mathematics with Applications. 2014. V 68. Iss. 8. P. 821—846. https://doi.org/10.1016/j.camwa.2014.07.014
- Kassam A., Trefethen L., Fourth-order time-stepping for stiff PDEs // SIAM J. Sci. Comput. 2005. V. 26. Iss. 4. P. 1214-1233. https://doi.org/10.1137/S1064827502410633
- He Y., Liu Y., Tang T. On large time-stepping methods for the Cahn-Hilliard equation // Appl. Numeric. Math. 2007. V. 57. Iss. 5-7. P. 616-628. https://doi.org/10.1016/j.apnum.2006.07.026
- Song H. Energy stable and large time-stepping methods for the Cahn-Hilliard equation // Inter. J. Comput. Math. 2015. V. 92. Iss. 10. P. 2091-2108. https://doi.org/10.1080/00207160.2014.964694
- LiD. Why large time-stepping methods for the Cahn-Hilliard equation is stable // Math. Comp. 2022. V. 91. № 238. P. 2501-2515. https://doi.org/10.1090/mcom/3768
- Chen W., Wang C., Wang X., Wise S.M. Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential // J. Comput. Phys.: X. 2009. V. 3. P. 100031. https://doi.org/10.1016/j.jcpx.2019.100031
- Chen W., Wang X., Yan Y., Zhang Z. A Second Order BDF Numerical Scheme with Variable Steps for the Cahn-Hilliard Equation // SIAM J. Numeric. Anal. 2019. V. 57. Iss. 1. P. 495-525. https://doi.org/10.1137/18M1206084
- Zhang J., Jiang M., Gong Y., Zhao J. Energy-stable predictor-corrector schemes for the Cahn-Hilliard equation // J. Comput. Appl. Math. 2020. V. 376. P. 112832. https://doi.org/10.1016/j.cam.2020.112832
- Zhou Q., Sun Y. Energy stability of exponential time differencing schemes for the nonlocal Cahn-Hilliard equation // Numer. Meth. Partial Differ. Eq. 2023. V. 39. Iss. 5. P. 4030-4058. https://doi.org/10.1002/num.23035
- Lee S. Unconditionally strong energy stable scheme for Cahn-Hilliard equation with second-order temporal accuracy // Math. Meth. Appl. Sci. 2023. V. 46. Iss. 6. P. 6463-6469. https://doi.org/10.1002/mma.8917
- Boyer F., Minjeaud S. Numerical schemes for a three component Cahn-Hilliard model // ESAIM: Math. Model. Numeric. Anal. 2011. V. 45. No. 4. P. 697-738. https://doi.org/10.1051/m2an/2010072
- Brachet M., Chehab J.-P. Fast and Stable Schemes for Phase Fields Models // Comput. Math. Appl. 2020. V. 80. Iss. 6. P. 1683-1713. https://doi.org/10.1016/j.camwa.2020.07.015
- Elliott C., French D.A. A nonconforming finite element method for the two-dimensional Cahn-Hilliard equation // SIAM J. Numer. Anal. 1989. V. 26. № 4. P. 884-903. www.jstor.org/stable/2157884
- Barrett J.B. An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy // Numer. Math. 1995. V. 72. P. 1-20. https://doi.org/10.1007/s002110050157
- Chen L.-Q., Shen J., Applications of semi-implicit fourier-spectral method to phase field equations // Comput. Phys. Commun. 1996. V. 108. Iss. 2-3. P. 147-158. https://doi.org/10.1016/S0010-4655(97)00115-X
- Furihata D. A stable and conservative finite difference scheme for the Cahn-Hilliard equation // Numer. Math. 2001. V. 87. Iss. 4. P. 675-699. https://doi.org/10.1007/PL00005429
- Feng X., Prohl A. Error analysis ofa mixed finite element method for the Cahn-Hilliard equation // Numer. Math. 2004. V. 99. Iss. 1. P. 47-84. https://doi.org/10.1007/s00211-004-0546-5
- Wells E., Kuhl K., Garikipati S. A discontinuous Galerkin method for the Cahn-Hilliard equation // J. Comput. Phys. 2006. V. 218. Iss. 2. P. 860-877. https://doi.org/10.1016/j.jcp.2006.03.010
- Wise S.M., Wang C., Lowengrub J.S. An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation // SIAM J. Numer. Anal. 2009. V. 47. Iss. 3. P. 2269-2288. https://doi.org/10.1137/0807381
- Du Q., Ju L., Tian L. Finite element approximation of the Cahn-Hilliard equation on surfaces // Comput. Meth. Appl. Mech. Engineer. 2011. V. 200. Iss. 29-32. P. 458-2470. https://doi.org/10.1016/j.cma.2011.04.018
- Xia Y., Xu Y., Shu C.-W. Local discontinuous Galerkin methods for the Cahn-Hilliard type equations //J. Comput. Phys. 2007. V 227. Iss. 1. P 472-491. https://doi.org/10.1016/jjcp.2007.08.001
- Brenner S.C., Diegel A.E. Sung L.-Y. A robust solver for a second order mixed finite element method for the Cahn-Hilliard equation // J. Comput. Appl. Math. 2020. V. 364. P. 112322. https://doi.org/10.1016/j.cam.2019.06.038
- Gomez H., Calo V.M., Bazilevs Y., Hughes T.J.R Isogeometric analysis of the Cahn-Hilliard phasefield model // Comput. Meth. Appl. Mech. Engineer. 2008. V. 197. Iss. 49-50. P. 4333-4352. https://doi.org/10.1016/j.cma.2008.05.003
- Zhang R., Qian X. Triangulation-based isogeometric analysis of the Cahn-Hilliard phase-field model // Comput. Meth. Appl. Mech. Engineer. 2019. V. 357. P. 112569. https://doi.org/10.1016/j.cma.2019.112569
- Kastner M., Metsch P., de Borst R. Isogeometric analysis of the Cahn-Hilliard equation -- a convergence study // J. Comput. Phys. 2016. V. 305. P. 360-371. https://doi.org/10.1016/j.jcp.2015.10.047
- Goudenege L., Martin D., Vial G. High Order Finite Element Calculations for the Cahn-Hilliard Equation //J. Sci. Comput. 2012. V. 52. P. 294-321. https://doi.org/10.1007/s10915-011-9546-7
- Чжао-дин Ю. Об устойчивости разностных схем для решения дифференциальных уравнений параболического типа // Докл. АН. 1957. Т. 117. № 4. С. 578-581. www.mathnet.ru/rus/dan22546
- Чжао-дин Ю. Некоторые разностные схемы численного решения дифференциального уравнения параболического типа // Матем. сб. 1960. Т. 50(92). № 4. С. 391-422. www.mathnet.ru/rus/sm4800
- Гельфанд И.М., Локуциевский О.В. О разностных схемах для решения уравнения теплопроводности. В кн.: Годунов С.К., Рябенький B.C. Введение в теорию разностных схем. М.: Физматгиз. 1962. 340 С.
- Бабенко К.И. Основы численного анализа. М.; Ижевск: Регулярная и хаотическая динамика. 2002. 848 С.
- Локуциевский В.О., Локуциевский О.В. Применение чебышевских параметров для численного решения некоторых эволюционных задач // Препринты ИПМ им. М.В. Келдыша РАН, 1984. № 99. 30 С. https://library.keldysh.ru/preprint.asp?id=1984-99
- Жуков В.Т. Численные эксперименты по решению уравнения теплопроводности методом локальных итераций // Препринты ИПМ им. М.В. Келдыша РАН, 1984. № 97. 22 C. https://library.keldysh.ru/preprint.asp?id=1984-97
- Локуциевский В.О., Локуциевский О.В. О численном решении краевых задач для уравнений параболического типа // Докл. АН СССР. 1986. Т. 291./ № 3. С. 540-544. www.mathnet.ru/rus/dan47741
- Жуков В.Т. Разностные схемы локальных итераций для параболических уравнений // Препринты ИПМ им. М.В. Келдыша, 1986. № 173. 31 С. https://library.keldysh.ru/preprint.asp?id=1986-173
- Жуков В.Т. Явно-итерационные схемы для параболических уравнений // Вопросы атомной науки и техники. Серия: Матем. моделирование физ. процессов, 1993. № 4. С. 40-46.
- Shvedov A.S., Zhukov V.T. Explicit iterative difference schemes for parabolic equations // Russian J. Numer. Anal. Math. Modelling. 1998. V. 13.№ 2.P. 133-148.
- Жуков В.Т. О явных методах численного интегрирования для параболических уравнений // Матем. моделирование. 2010. Т. 22. № 10. С. 127-158; Math. Models Comput. Simul. 2011. V. 3. №3. P. 311-332.
- Жуков В.Т., Новикова Н.Д., Феодоритова О.Б. О применении многосеточного и явно-итерационного методов к решению параболических уравнений с анизотропными разрывными коэффициентами // Препринты ИПМ им. М.В. Келдыша. 2014. № 085. 24С.
- Жуков В.Т., Феодоритова О.Б., Дубень А.П., Новикова Н.Д. Явное интегрирование по времени уравнений Навье-Стокса с помощью метода локальных итераций // Препринты ИПМ им. М.В. Келдыша. 2019. № 012. 32 С.
- Жуков В.Т., Феодоритова О.Б. О развитии параллельных алгоритмов решения параболических и эллиптических уравнений // Матем. анализ, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 155, ВИНИТИ РАН, М., 2018, 20-37; J. Math. Sci. (N.Y.), 254:5 (2021), 606-624.
- Жуков В.Т., Зайцев Н.А., Лысов В.Г., Рыков Ю.Г., Феодоритова О.Б. Численный анализ модели процессов кристаллизации металлов, двумерный случай // Матем. моделирование. 2012. Т. 24. № 1. С. 109-128; Math. Models Comput. Simul. 2012. V. 4. № 4. P. 440-453.
- Lee D., Huh J.-Y., Jeong D., Shin J., Yun A., Kim J. Physical, mathematical, and numerical derivations of the Cahn-Hilliard equation // Comput. Materials Sci. 2014. V. 81. P. 216-225. https://doi.org/10.1016/j.commatsci.2013.08.027
- Lee S., Lee C., Lee H., Kim J. Comparison of different numerical schemes for the Cahn-Hilliard equation // Journal of the Korea Society for Industrial and Applied Mathematics. 2013. V. 17. Iss. 3. P. 197-207. https://doi.org/10.12941/jksiam.2013.17.197
- Botchev M.A., Zhukov V.T. Adaptive iterative explicit time integration for nonlinear heat conduction problems // Lobachevskii J. Math. 2024. V. 44. (To appear.)
Supplementary files
