EFFICIENT AND STABLE TIME INTEGRATION OF THE CAHN-HILLARD EQUATIONS: EXPLICIT, IMPLICIT, AND EXPLICIT-ITERATIVE SCHEMES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article proposes a new algorithm for numerical integration over time of the Cahn-Hilliard equation, based on the combined application of the Eyre splitting method and the local iteration modified (LIM) scheme for solving a finite-dimensional problem at each time step. The proposed method is gradient-stable and allows calculations with large time steps and has an explicit nature of calculations. The results of numerical calculations are presented, demonstrating the capabilities of the proposed method and its comparison with common methods of time integration of the Cahn– Hilliard equation.

About the authors

M. A Botchev

Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences

Email: botchev@kiam.ru
Moscow, Russia

I. A Fakhurdinov

Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences; National Research Nuclear University “Moscow Engineering Physics Institute”

Email: mv1451003@gmail.com
Moscow, Russia

E. B Savenkov

Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences

Email: savenkov@keldysh.ru
Moscow, Russia

References

  1. Cahn J.W., Hilliard J.E. Free Energy of a Nonuniform System. I. Interfacial Free Energy // J. Chemic. Phys. 1958. V 28. № 2. P 258-267. https://doi.Org/10.1063/1.1744102
  2. Gurtin M.E. Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance // Physica D: Nonlinear Phenomena.1996. V. 92. Iss. 3-4. P. 178-192. https://doi.org/10.1016/0167-2789(95)00173-5
  3. Provatas N., Elder K. Phase-Field Methods in Materials Science and Engineering. First published:7 October 2010 https://doi.org/10.1002/97835276315202010 Wiley-VCH Verlag GmbH & Co. KGaA
  4. Steinbach I., Salama H. Lectures on Phase Field. Springer Cham, 2023. https://doi.org/10.1007/978-3-031-21171-3
  5. Скрипов В.П., Скрипов А.В. Спинодальный распад (Фазовый переход с участием неустойчивых состояний) // УФН. 1979. Т. 128. Вып. 2. С. 193-231. https://doi.org/10.3367/UFNr.0128.197906a.0193
  6. Hohenberg P.C., Halperin B.I. Theory of dynamic critical phenomena // Rev. Mod. Phys. 177. V. 49. Iss. 3. P. 435. https://doi.org/10.1103/RevModPhys.49.435
  7. Penrose O., Fife P.C. Thermodynamically consistent models of phase-field type for the kinetic of phase transitions // Physica D: Nonlinear Phenomena. 1990. V. 43. Iss. 1. P. 44-62. https://doi.org/10.1016/0167-2789(90)90015-H
  8. Bray A.J. Theory of phase-ordering kinetics // Adv. Phys. 2002. V. 51. № 2. P. 481-587. https://doi.org/10.1080/00018730110117433
  9. Miranville A. The Cahn-Hilliard Equation: Recent Advances and Applications // Soc. Indust. Appl. Math. 2019. https://doi.org/10.1137/1.9781611975925
  10. Pego R.L. Front Migration in the Nonlinear Cahn-Hilliard Equation // Proceed. Royal Soc. London. Ser. A. Math. Phys. Sci. 1989. V. 422. № 863. P. 261-278. www.jstor.org/stable/2398477
  11. Bates P.W., Fife P.C The Dynamics of Nucleation for the Cahn-Hilliard Equation // SIAM J. Appl. Math. 1993. V. 53. № 4. P. 990-1008. www.jstor.org/stable/2102259
  12. de Mello E.V.L., Otton Teixeira da Silveira Filho Numerical study of the Cahn-Hilliard equation in one, two and three dimensions // Physica A: Statistic. Mech. Appl. 2005. V. 347. P. 429-443. https://doi.org/10.1016/j.physa.2004.08.076
  13. Vollmayr-Lee B.P., Rutenberg A.D. Fast and accurate coarsening simulation with an unconditionally stable time step // Phys. Rev. E. 2003. V. 68. Iss. 6. P. 066703. https://doi.org/10.1103/PhysRevE.68.066703
  14. Eyre D.J. An unconditionally stable one-step scheme for gradient systems // Tech. Rep. Department of Mathematics, University of Utah. 1997. unpublished. https://api.semanticscholar.org/CorpusID:117273508
  15. Eyre D.J. Unconditionally gradient stable time marching the Cahn-Hilliard equation // Comput. Math. Model. Microstructur. Evolut. Mater. Res. Soc. Symp. Proc. Ed. V. 529. Bullard J.W., Chen L.-Q., Kalia R.K., Stoneham A.M., 1998. P. 39-46.
  16. Tierra G., Guillen-Gonzalez F. Numerical methods for solving the Cahn-Hilliard equation and its applicability to related Energy-based models // Necas Center for Math. Model. Preprint № 2013-035.
  17. Cueto-Felgueroso L., Peiraire J. A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations // J. Comput. Phys. 2008. V. 227. Iss. 4. P. 9985-10017. https://doi.org/10.1016/j.jcp.2008.07.024
  18. Li Y., Choi Y., Kim J. Computationally efficient adaptive time step method for the Cahn-Hilliard equation // Comput. Math. Appl. 2017. V. 73. Iss. 8. P. 1855-1864. https://doi.org/10.1016/j.camwa.2017.02.021
  19. Zhang Z., Qiao Z. An Adaptive Time-Stepping Strategy for the Cahn-Hilliard Equation // Comm. Computat. Phys. 2012. V. 11. Iss.4. P. 1261-1278. https://doi.org/10.4208/cicp.300810.140411s
  20. Minkoff S.E., Kridler N.M. A comparison of adaptive time stepping methods for coupled flow and deformation modeling // Appl. Math. Model. 2006. V. 30. Iss. 9. P. 993-1009. https://doi.org/10.1016/j.apm.2005.08.002
  21. Luo F., Tang T., Xie H. Parameter-Free Time Adaptivity Based on Energy Evolution for the Cahn-Hilliard Equation // Comm. Computa. Phys. 2016. V 19. Iss. 5. P 1542—1563. https://doi.org/10.4208/cicp.scpde14.45s
  22. Guillen-Gonzalez F., Tierra G. Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models // Computers and Mathematics with Applications. 2014. V 68. Iss. 8. P. 821—846. https://doi.org/10.1016/j.camwa.2014.07.014
  23. Kassam A., Trefethen L., Fourth-order time-stepping for stiff PDEs // SIAM J. Sci. Comput. 2005. V. 26. Iss. 4. P. 1214-1233. https://doi.org/10.1137/S1064827502410633
  24. He Y., Liu Y., Tang T. On large time-stepping methods for the Cahn-Hilliard equation // Appl. Numeric. Math. 2007. V. 57. Iss. 5-7. P. 616-628. https://doi.org/10.1016/j.apnum.2006.07.026
  25. Song H. Energy stable and large time-stepping methods for the Cahn-Hilliard equation // Inter. J. Comput. Math. 2015. V. 92. Iss. 10. P. 2091-2108. https://doi.org/10.1080/00207160.2014.964694
  26. LiD. Why large time-stepping methods for the Cahn-Hilliard equation is stable // Math. Comp. 2022. V. 91. № 238. P. 2501-2515. https://doi.org/10.1090/mcom/3768
  27. Chen W., Wang C., Wang X., Wise S.M. Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential // J. Comput. Phys.: X. 2009. V. 3. P. 100031. https://doi.org/10.1016/j.jcpx.2019.100031
  28. Chen W., Wang X., Yan Y., Zhang Z. A Second Order BDF Numerical Scheme with Variable Steps for the Cahn-Hilliard Equation // SIAM J. Numeric. Anal. 2019. V. 57. Iss. 1. P. 495-525. https://doi.org/10.1137/18M1206084
  29. Zhang J., Jiang M., Gong Y., Zhao J. Energy-stable predictor-corrector schemes for the Cahn-Hilliard equation // J. Comput. Appl. Math. 2020. V. 376. P. 112832. https://doi.org/10.1016/j.cam.2020.112832
  30. Zhou Q., Sun Y. Energy stability of exponential time differencing schemes for the nonlocal Cahn-Hilliard equation // Numer. Meth. Partial Differ. Eq. 2023. V. 39. Iss. 5. P. 4030-4058. https://doi.org/10.1002/num.23035
  31. Lee S. Unconditionally strong energy stable scheme for Cahn-Hilliard equation with second-order temporal accuracy // Math. Meth. Appl. Sci. 2023. V. 46. Iss. 6. P. 6463-6469. https://doi.org/10.1002/mma.8917
  32. Boyer F., Minjeaud S. Numerical schemes for a three component Cahn-Hilliard model // ESAIM: Math. Model. Numeric. Anal. 2011. V. 45. No. 4. P. 697-738. https://doi.org/10.1051/m2an/2010072
  33. Brachet M., Chehab J.-P. Fast and Stable Schemes for Phase Fields Models // Comput. Math. Appl. 2020. V. 80. Iss. 6. P. 1683-1713. https://doi.org/10.1016/j.camwa.2020.07.015
  34. Elliott C., French D.A. A nonconforming finite element method for the two-dimensional Cahn-Hilliard equation // SIAM J. Numer. Anal. 1989. V. 26. № 4. P. 884-903. www.jstor.org/stable/2157884
  35. Barrett J.B. An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy // Numer. Math. 1995. V. 72. P. 1-20. https://doi.org/10.1007/s002110050157
  36. Chen L.-Q., Shen J., Applications of semi-implicit fourier-spectral method to phase field equations // Comput. Phys. Commun. 1996. V. 108. Iss. 2-3. P. 147-158. https://doi.org/10.1016/S0010-4655(97)00115-X
  37. Furihata D. A stable and conservative finite difference scheme for the Cahn-Hilliard equation // Numer. Math. 2001. V. 87. Iss. 4. P. 675-699. https://doi.org/10.1007/PL00005429
  38. Feng X., Prohl A. Error analysis ofa mixed finite element method for the Cahn-Hilliard equation // Numer. Math. 2004. V. 99. Iss. 1. P. 47-84. https://doi.org/10.1007/s00211-004-0546-5
  39. Wells E., Kuhl K., Garikipati S. A discontinuous Galerkin method for the Cahn-Hilliard equation // J. Comput. Phys. 2006. V. 218. Iss. 2. P. 860-877. https://doi.org/10.1016/j.jcp.2006.03.010
  40. Wise S.M., Wang C., Lowengrub J.S. An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation // SIAM J. Numer. Anal. 2009. V. 47. Iss. 3. P. 2269-2288. https://doi.org/10.1137/0807381
  41. Du Q., Ju L., Tian L. Finite element approximation of the Cahn-Hilliard equation on surfaces // Comput. Meth. Appl. Mech. Engineer. 2011. V. 200. Iss. 29-32. P. 458-2470. https://doi.org/10.1016/j.cma.2011.04.018
  42. Xia Y., Xu Y., Shu C.-W. Local discontinuous Galerkin methods for the Cahn-Hilliard type equations //J. Comput. Phys. 2007. V 227. Iss. 1. P 472-491. https://doi.org/10.1016/jjcp.2007.08.001
  43. Brenner S.C., Diegel A.E. Sung L.-Y. A robust solver for a second order mixed finite element method for the Cahn-Hilliard equation // J. Comput. Appl. Math. 2020. V. 364. P. 112322. https://doi.org/10.1016/j.cam.2019.06.038
  44. Gomez H., Calo V.M., Bazilevs Y., Hughes T.J.R Isogeometric analysis of the Cahn-Hilliard phasefield model // Comput. Meth. Appl. Mech. Engineer. 2008. V. 197. Iss. 49-50. P. 4333-4352. https://doi.org/10.1016/j.cma.2008.05.003
  45. Zhang R., Qian X. Triangulation-based isogeometric analysis of the Cahn-Hilliard phase-field model // Comput. Meth. Appl. Mech. Engineer. 2019. V. 357. P. 112569. https://doi.org/10.1016/j.cma.2019.112569
  46. Kastner M., Metsch P., de Borst R. Isogeometric analysis of the Cahn-Hilliard equation -- a convergence study // J. Comput. Phys. 2016. V. 305. P. 360-371. https://doi.org/10.1016/j.jcp.2015.10.047
  47. Goudenege L., Martin D., Vial G. High Order Finite Element Calculations for the Cahn-Hilliard Equation //J. Sci. Comput. 2012. V. 52. P. 294-321. https://doi.org/10.1007/s10915-011-9546-7
  48. Чжао-дин Ю. Об устойчивости разностных схем для решения дифференциальных уравнений параболического типа // Докл. АН. 1957. Т. 117. № 4. С. 578-581. www.mathnet.ru/rus/dan22546
  49. Чжао-дин Ю. Некоторые разностные схемы численного решения дифференциального уравнения параболического типа // Матем. сб. 1960. Т. 50(92). № 4. С. 391-422. www.mathnet.ru/rus/sm4800
  50. Гельфанд И.М., Локуциевский О.В. О разностных схемах для решения уравнения теплопроводности. В кн.: Годунов С.К., Рябенький B.C. Введение в теорию разностных схем. М.: Физматгиз. 1962. 340 С.
  51. Бабенко К.И. Основы численного анализа. М.; Ижевск: Регулярная и хаотическая динамика. 2002. 848 С.
  52. Локуциевский В.О., Локуциевский О.В. Применение чебышевских параметров для численного решения некоторых эволюционных задач // Препринты ИПМ им. М.В. Келдыша РАН, 1984. № 99. 30 С. https://library.keldysh.ru/preprint.asp?id=1984-99
  53. Жуков В.Т. Численные эксперименты по решению уравнения теплопроводности методом локальных итераций // Препринты ИПМ им. М.В. Келдыша РАН, 1984. № 97. 22 C. https://library.keldysh.ru/preprint.asp?id=1984-97
  54. Локуциевский В.О., Локуциевский О.В. О численном решении краевых задач для уравнений параболического типа // Докл. АН СССР. 1986. Т. 291./ № 3. С. 540-544. www.mathnet.ru/rus/dan47741
  55. Жуков В.Т. Разностные схемы локальных итераций для параболических уравнений // Препринты ИПМ им. М.В. Келдыша, 1986. № 173. 31 С. https://library.keldysh.ru/preprint.asp?id=1986-173
  56. Жуков В.Т. Явно-итерационные схемы для параболических уравнений // Вопросы атомной науки и техники. Серия: Матем. моделирование физ. процессов, 1993. № 4. С. 40-46.
  57. Shvedov A.S., Zhukov V.T. Explicit iterative difference schemes for parabolic equations // Russian J. Numer. Anal. Math. Modelling. 1998. V. 13.№ 2.P. 133-148.
  58. Жуков В.Т. О явных методах численного интегрирования для параболических уравнений // Матем. моделирование. 2010. Т. 22. № 10. С. 127-158; Math. Models Comput. Simul. 2011. V. 3. №3. P. 311-332.
  59. Жуков В.Т., Новикова Н.Д., Феодоритова О.Б. О применении многосеточного и явно-итерационного методов к решению параболических уравнений с анизотропными разрывными коэффициентами // Препринты ИПМ им. М.В. Келдыша. 2014. № 085. 24С.
  60. Жуков В.Т., Феодоритова О.Б., Дубень А.П., Новикова Н.Д. Явное интегрирование по времени уравнений Навье-Стокса с помощью метода локальных итераций // Препринты ИПМ им. М.В. Келдыша. 2019. № 012. 32 С.
  61. Жуков В.Т., Феодоритова О.Б. О развитии параллельных алгоритмов решения параболических и эллиптических уравнений // Матем. анализ, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 155, ВИНИТИ РАН, М., 2018, 20-37; J. Math. Sci. (N.Y.), 254:5 (2021), 606-624.
  62. Жуков В.Т., Зайцев Н.А., Лысов В.Г., Рыков Ю.Г., Феодоритова О.Б. Численный анализ модели процессов кристаллизации металлов, двумерный случай // Матем. моделирование. 2012. Т. 24. № 1. С. 109-128; Math. Models Comput. Simul. 2012. V. 4. № 4. P. 440-453.
  63. Lee D., Huh J.-Y., Jeong D., Shin J., Yun A., Kim J. Physical, mathematical, and numerical derivations of the Cahn-Hilliard equation // Comput. Materials Sci. 2014. V. 81. P. 216-225. https://doi.org/10.1016/j.commatsci.2013.08.027
  64. Lee S., Lee C., Lee H., Kim J. Comparison of different numerical schemes for the Cahn-Hilliard equation // Journal of the Korea Society for Industrial and Applied Mathematics. 2013. V. 17. Iss. 3. P. 197-207. https://doi.org/10.12941/jksiam.2013.17.197
  65. Botchev M.A., Zhukov V.T. Adaptive iterative explicit time integration for nonlinear heat conduction problems // Lobachevskii J. Math. 2024. V. 44. (To appear.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences