COMPUTATION OF UNSTEADY SWIRLING FLOWS IN NOZZLES AND PIPES BY APPLYING A NEW LOCALLY IMPLICIT GODUNOV-TYPE SCHEME
- 作者: Zaitsev N.A1, Rykov Y.G1
-
隶属关系:
- Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
- 期: 卷 64, 编号 8 (2024)
- 页面: 1529-1545
- 栏目: Mathematical physics
- URL: https://rjonco.com/0044-4669/article/view/665039
- DOI: https://doi.org/10.31857/S0044466924080164
- EDN: https://elibrary.ru/XZUOOM
- ID: 665039
如何引用文章
详细
A new class of numerical schemes for calculating unsteady swirling flows in nozzles and pipes based on compressible inviscid gas equations is presented. The main advantage of these schemes is their ability to efficiently handle unsteady problems with multiple scales. The construction of such schemes is based on the well-known Godunov approach, which involves calculating fluxes at the faces of computational cells (volumes) by solving auxiliary one-dimensional problems in the vicinity of each face and approximating conservation laws. The scheme switches from an explicit method to an implicit one for flux calculation based on an analysis of the current solution near the cell face. The scheme is absolutely stable and does not generate spurious oscillations. Its effectiveness is demonstrated in the calculation of unsteady swirling flows in nozzles and pipes. Specifics of setting up problems of this type are investigated, and options for proper problem formulation are proposed. Properties of the solution for swirling flows with a central body covering only part of the symmetry axis in the computational domain are also studied.
作者简介
N. Zaitsev
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
Email: nikolai_zaitsev@mail.ru
Moscow, Russia
Yu. Rykov
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
Email: yu-rykov@yandex.ru
Moscow, Russia
参考
- Годунов С. К. Разностный метод численного расчета разрывных решений уравнений гидродинамики // Матем. сборник. 1959. №3. С. 271—306.
- Годунов С. К., Забродин А. В., Иванов М. Я., Крайко А. Н., Прокопов Г. П. Численное решение многомерных задач газовой динамики. М.: Наука, 1975. 400 с.
- Roe P. L. Approximate Riemann solvers, parameter vectors, and difference schemes // J. of Comp. Phys. 1981. V. 43. P 357-372.
- Osher S., Solomon F. Upwind difference schemes for hyperbolic systems of conservation laws // Math. Comput. 1982. V 38. P 339-348.
- Гейн С. В., Зайцев Н. А., Посвянский В. С., Радвогин Ю. Б. Метод независимых потоков для численного решения многомерного уравнения теплопроводности : Препринты ИПМ им. М. В. Келдыша. 2003. № 53. 23 с.
- Радвогин Ю. Б. Экономичные безусловно устойчивые локально-неявные разностные схемы решения двумерных гиперболических систем :Препринты ИПМ им. М. В. Келдыша, 2003. № 35. 32 с.
- Radvogin Yu. B., Zaitsev N. A. A locally implicit second order accurate difference schemes for solving 2D timedependent hyperbolic systems and Euler equations // Proc. of Intern. Conf. on Spectral and High order Methods. Herzliya. 1998. in Appl. Num. Math. М. 2000. V. 33. P. 525-532.
补充文件
