FAULT-TOLERANT FAMILIES OF PRODUCTION PLANS: MATHEMATICAL MODEL, COMPUTATIONAL COMPLEXITY AND BRANCH AND BOUND ALGORITHMS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The design of fault-tolerant production and supply systems is one of the priority areas of development of modern operations research. The traditional approach to modeling such systems is based on the use of probabilistic models describing the choice of a possible scenario of actions in the event of failures in the production or transport network. Along with a number of advantages, this approach has a wellknown drawback. The occurrence of failures of an unknown nature that can jeopardize the operability of the entire modeled system significantly complicates its application. In this paper, we introduce the minimax problem of constructing fault-tolerant production plans (Reliable Production Process Design Problem, RPPDP), the purpose of which is to ensure the smooth functioning of a distributed production system with minimal guaranteed costs. It is shown that the RPPDP problem is NP-hard in the strong sense and remains intractable under fairly specific conditions. To find exact and approximate solutions with accuracy estimates for this problem, branch and bound methods have been developed based on the proposed compact model of mixed integer linear programming (MILP) and the author’s heuristics of adaptive large neighborhood search (ALNS) within the framework of extensions of the well-known Gurobi MIP-solver. High performance and complementarity of the proposed algorithms have been confirmed by the results of numerical experiments conducted on an open library of test examples developed by the authors, containing adapted problem statements from the PCGTSPLIB library.

About the authors

Yu. Yu. Ogorodnikov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences

Email: yogorodnikov@imm.uran.ru
Yekaterinburg, 620108 Russia

R. A. Rudakov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences

Email: r.a.rudakov@gmail.com
Yekaterinburg, 620108 Russia

D’ M. Khachay

KEDGE Business School

Email: daniil.khachai@kedgebs.com
Talence, France

M. Yu. Khachay

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences

Email: mkhachay@imm.uran.ru
Yekaterinburg, 620108 Russia

References

  1. Schilling L., Seuring S. Linking the digital and sustainable transformation with supply chain practices // Int. J. Prod. Res. 2023. https://doi.org/10.1080/00207543.2023.2173502
  2. Fan Y., Schwartz F., Vob S., Woodruff D. L. Catastrophe insurance and flexible planning for supply chain disruption management: a stochastic simulation case study // Int. J. Prod. Res. 2023. https://doi.org/10.1080/00207543.2023.2176179
  3. Fortune S., Hopcroft J., Wyllie J. The directed subgraph homeomorphism problem // Theor. Comput. Sci. 1980. V. 10. N 2. P. 111–121.
  4. Eilam-Tzoreff T. The disjoint shortest paths problem // Discret. Appl. Math. 1998. V. 85. N 2. P. 113–138.
  5. Ferone D., Festa P., Guerriero F., Laganà D. The constrained shortest path tour problem // Comput. Oper. Res. 2016. V. 74. P. 64–77.
  6. Ferone D., Festa‘P., Guerriero F. An efficient exact approach for the constrained shortest path tour problem // Optim. Methods Softw. 2020. V. 35. N 1. P. 1–20.
  7. Martin S., Magnouche Y., Juvigny C., Leguay J. Constrained shortest path tour problem: branch-and-price algorithm // Comp. Oper. Res. 2022. V. 144. P. 105819. https://doi.org/10.1016/j.cor.2022.105819
  8. Saksena J. P., Kumar S. The routing problem with ’k’ specified nodes // Oper. Res. 1966. V. 14. N 5. P. 909–913.
  9. Kudriavtsev A., Khachay D., Ogorodnikov Y., Ren J., Shao S. C., Zhang D., Khachay M. The shortest simple path problem with a fixed number of must-pass nodes: a problem-specific branch-and-bound algorithm // LNCS. 2021. V. 12931. P. 198–210.
  10. Andrade R. C. d. New formulations for the elementary shortest-path problem visiting a given set of nodes // Eur. J. Oper. Res. 2016. V. 254. N 3. P. 755–768.
  11. Gutin G., Punnen A. P. The Traveling Salesman Problem and Its Variations. B.: Springer. 2007.
  12. Papadimitriou C. Euclidean TSP is NP-complete // Theor. Comput. Sci. 1977. V. 4. P. 237–244.
  13. Khachay M., Ukolov S., Petunin A. Problem-Specific Branch-and-Bound Algorithms for the Precedence Constrained Generalized Traveling Salesman Problem // LNCS. 2021. V. 13078. P. 136–148.
  14. Chentsov A. G., Khachai M. Y., Khachai D. M. An exact algorithm with linear complexity for a problem of visiting megalopolises // Proc. Steklov Inst. Math. 2016. V. 295. N 1. P. 38–46.
  15. Khachai M. Y., Neznakhina E. D. Approximation schemes for the Generalized Traveling Salesman Problem // Proc. Steklov Inst. Math. 2017. V. 299. Suppl. 1. P. 97–105.
  16. Khachay M., Neznakhina K. Complexity and approximability of the Euclidean Generalized Traveling Salesman Problem in grid clusters // Ann. Math. Artif. Intell. 2020. V. 88. N 1. P. 53–69.
  17. Khachay M., Kudriavtsev A., Petunin A. PCGLNS: A heuristic solver for the Precedence Constrained Generalized Traveling Salesman Problem // LNCS. 2020. V. 12422. P. 196–208.
  18. Morin T. L., Marsten R. E. Branch-and-bound strategies for dynamic programming // Oper. Res. 1976. V. 24. N 4. P. 611–627.
  19. Khachai D., Sadykov R., Battaia O., Khachay M. Precedence Constrained Generalized Traveling Salesman Problem: Polyhedral study, formulations, and branch-and-cut algorithm // Eur. J. Oper. Res. 2023. V. 309. N 2. P. 488–505.
  20. Salman R., Ekstedt F., Damaschke P. Branch-and-bound for the Precedence Constrained Generalized Traveling Salesman Problem // Oper. Res. Lett. 2020. V. 48. N 2. P. 163–166.
  21. Gurobi Optimization. Gurobi optimizer reference manual (2021), https://www.gurobi.com/ documentation/9.5/refman/index.html
  22. Ropke S., Pisinger D. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows // Transp. Sci. 2006. V. 40. P. 455–472.
  23. Kalateh Ahani I., Salari M., Hosseini S. M., Iori M. Solution of minimum spanning forest problems with reliability constraints // Comput. Ind. Eng. 2020. Vol. 142. P. 106365. https://doi.org/10.1016/j.cie.2020.106365
  24. Smith S. L., Imeson F. GLNS: An effective large neighborhood search heuristic for the Generalized Traveling Salesman Problem // Comp. Oper. Res. 2017. V. 87. P. 1–19.
  25. Gendreau M., Potvin J.-Y. Handbook of Metaheuristics. Cham: Springer. 2019.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences