PROBLEMS OF DETERMINING QUASI-STATIONARY ELECTROMAGNETIC FIELDS IN WEAKLY INHOMOGENEOUS MEDIA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Statements of initial-boundary value problems for the system of Maxwell equations in various quasi-stationary approximations in homogeneous and inhomogeneous conducting media are considered. In the case of weakly inhomogeneous media, asymptotic expansions of solutions of the initial-boundary value problems under consideration in a parameter characterizing the degree of inhomogeneity of the medium are formulated and substantiated. It is shown that the construction of an asymptotic expansion for a quasi- stationary electromagnetic approximation leads to a sequential solution of independent problems for a quasi- stationary electric and quasi-stationary magnetic approximation in a homogeneous medium. Conditions on the initial data are given for which the asymptotic series are convergent.

About the authors

A. V. Kalinin

National Research Lobachevsky State University of Nizhny Novgorod; Institute of Applied Physics, Russian Academy of Sciences

Email: avk@mm.unn.ru
Nizhny Novgorod, 603022 Russia; Nizhny Novgorod, 603950 Russia

A. A. Tyukhtina

National Research Lobachevsky State University of Nizhny Novgorod

Email: tyukhtina@iee.unn.ru
Nizhny Novgorod, 603022 Russia

S. A. Malov

National Research Lobachevsky State University of Nizhny Novgorod

Nizhny Novgorod, 603022 Russia

References

  1. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Том 8. Электродинамика сплошных сред. М.: Наука, Физматлит, 1982.
  2. Тамм И. Е. Основы теории электричества. М.: Наука, 1989.
  3. Толмачев В. В., Головин А. М., Потапов В. С. Термодинамика и электродинамика сплошной среды. М.: Изд-во МГУ, 1988.
  4. Raviart P.-A., Sonnendrücker E. A hierarchy of approximate models for the Maxwell equations // Numer. Math. 1996. V. 73. P. 329–372.
  5. Larsson J. Electromagnetics from a quasistatic perspective // Am. J. Phys. 2007. V. 75. N 3. P. 230–239.
  6. Kruger S. E. The three quasistatic limits of the Maxwell equations // arXiv:1909.11264, 2019.
  7. Kalinin A. V., Tyukhtina A. A. Hierarchy of models of quasi-stationary electromagnetic fields // MMST 2020, Revised Selected Papers. CCIS, v. 1413. Springer, 2021. P. 77–92.
  8. Kalinin A. V., Slyunyaev N. N. Initial-boundary value problems for the equations of the global atmospheric electric circuit // J. Math. Anal. Appl. 2017. V. 450. N 1. P. 112–136.
  9. Alonso Rodriguez A., Valli A. Eddy current approximation of Maxwell equations. Theory, algorithms and applications. Milan: Spriner-Verlag Italia, 2010.
  10. Degond P., Raviart P.-A. An analysis of the Darwin model of approximation to Maxwell’s equations // Forum Math. 1992. V. 4. P. 13–44.
  11. Kaufman A. N., Rostler P. S. The Darwin model as a tool for electromagnetic plasma simulation // Phys. Fluids. 1971. V. 14. N 2. P. 446–448.
  12. Hewett D. W., Boyd J. K. Streamlined Darwin simulation of nonneutral plasmas // J. Comput. Phys. 1987. V. 70. P. 166–181.
  13. Krause T. B., Apte A., Morrison P. J. A unified approach to the Darwin approximation // Phys. Plasmas 2007. V. 14. 102112.
  14. Sonnendrücker E., Ambrosiano J. J., Scott T. Brandon S. T. A finite element formulation of the Darwin PIC model for use on unstructured grids // J. Comp. Phys. 1995. V. 121. N 2. P. 281–297.
  15. Ciarlet P. Jr., Zou J. Finite element convergence for the Darwin model to Maxwell’s equations // Math. Modeling Numer. Anal. 1997. V. 31. N 2. P. 213–249.
  16. Fang N., Liao C., Ying L. A. Darwin Approximation to Maxwell’s Equations // ICCS 2009. Lecture Notes in Computer Science. V. 5544. Berlin: Springer, 2009.
  17. Koch S., Schneider H., Weiland T. A low-frequency approximation to the Maxwell equations simultaneously considering inductive and capacitive phenomena // IEEE Trans. Magn. 2012. V. 48. P. 511–514.
  18. Badics Z., Pavo J., Bilicz S., Gyimothy S. Subdomain perturbation finite element method for quasi-static Darwin approximation // IEEE Trans. Magn. 2020. V. 56. N 1. Art no. 7503304.
  19. Yan S., Tang Z., Henneron T., Ren Z. Structure-preserved reduced-order modeling for frequency-domain solution of the Darwin model with a gauged potential formulation // IEEE Trans. Magn. 2020. V. 56. N 1. Art no. 7500404.
  20. Clemens M., Kasolis F., Henkel M.-L., Kähne B., Günther M. A two-step Darwin model time-domain formulation for quasi-static electromagnetic field calculations // IEEE Trans. Magn. 2021. V. 57. N 6. P. 1–4.
  21. Мареев Е. А. Достижения и перспективы исследований глобальной электрической цепи // Успехи физ. наук. 2010. Т. 180. N 5. С. 527–534.
  22. Калинин А. В., Слюняев Н. Н., Мареев Е. А., Жидков А. А. Стационарные и нестационарные модели глобальной электрической цепи: корректность, аналитические соотношения, численная реализация // Известия РАН. Физика атмосферы и океана. 2014. Т. 50. N 3. С. 314–322.
  23. Slyunyaev N. N., Кalinin A. V., Mareev E. A. Thunderstorm generators operating as voltage sources in global electric circuit models // J. Atm. Solar-Terr. Phys. 2019. V. 183. P. 99–109.
  24. Shalimov S. L., Bösinger T. An alternative explanation for the ultra-slow tail of sprite-associated lightning discharges // J. Atm. and Solar-Terr. Phys. 2006. V. 68. N 7. P. 814–820.
  25. Калинин А. В., Тюхтина А. А. Некоторые математические задачи атмосферного электричества // Итоги науки и техники. Совр. мат. прил. 2022. Т. 207. С. 48–60.
  26. Raviart P.-A., Sonnendrücker E. Approximate models for the Maxwell equations // J. Comput. Appl. Math. 1994. V. 63. P. 69–81.
  27. Ciarlet P., Sonnendrücker E. A Decomposition of the electromagnetic field – application to the Darwin model // Math. Mod. Meth. Appl. Sci. 1997. V. 07. N 8. P. 1085–1120.
  28. Fang N., Ying L. Three dimensional exterior problem of the Darwin model and its numerical computation // Math. Mod. Meth. Appl. Sci. 2008. V. 18. N 10. P. 1673–1701.
  29. Liao C., Ying L. An analysis of the Darwin model of approximation to Maxwell equations in 3-D unbounded domains // Comm. Math. Sci. 2008. V. 6. N 3. P. 695–710.
  30. Калинин А. В., Тюхтина А. А. Приближение Дарвина для системы уравнений Максвелла в неоднородных проводящих средах // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. N 8. С. 121–134.
  31. Темам Р. Уравнения Навье––Стокса. Теория и численный анализ. М.: Мир, 1981.
  32. Girault V., Raviart P. Finite element methods for Navier––Stokes equations. N.Y.: Springler-Verlag, 1986.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences