APPLICATION OF CABARET AND WENO SCHEMES FOR SOLVING THE NONLINEAR TRANSPORT EQUATION IN THE MODELING OF SOUND WAVE PROPAGATION IN THE ATMOSPHERE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The most convenient model for describing the phenomenon of shock wave propagation in the atmosphere is the extended Burgers equation. This work investigates the influence of the numerical scheme on the results of solving the equation, which accounts for the nonlinear nature of shock wave propagation in the atmosphere. This equation is a key component of the extended Burgers equation and defines the transformation of the perturbed pressure profile during its propagation. Two numerical schemes were applied for the solution: CABARET and WENO, which are quasi-monotonic finite difference schemes that allow for solutions without significant numerical oscillations. An analysis of the applicability of these schemes for solving the considered problem was conducted.

About the authors

P. A Mishchenko

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Email: mischenko.polina.16@gmail.com
Novosibirsk, Russia

T. A Himon

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Novosibirsk, Russia

V. A Kolotilov

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS; M. A. Lavrentiev Institute of Hydrodynamics SB RAS

Novosibirsk, Russia

A. N Kudryavtseva

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Novosibirsk Russia

References

  1. Чернышев С.Л. Звуковой удар. М.: Наука, 2011.
  2. Cleveland R.O. Propagation of sonic booms through a real, stratified atmosphere : PhD thesis. Univer. Texas at Austin, 1995.
  3. Blackstock D.T. Nonlinear acoustics (theoretical) // Am. Inst. Phys. Handbook. 1972. V. 3.
  4. Rallabhandi S.K. Advanced sonic boom prediction using the augmented Burgers equation // J. Aircraft. 2011. V. 48. №4. P 1245-1253.
  5. Qiao J.L. et al. Development of sonic boom prediction code for supersonic transports Based on augmented Burgers equation // AIAA Aviation 2019 Forum. 2019. P. 3571.
  6. Kanamori M. et al. Comparison of simulated sonic boom in stratified atmosphere with flight test measurements // AIAA J. 2018. V. 56. № 7. P. 2743-2755.
  7. Lonzaga J.B. Recent Enhancements to NASA PCBoom Sonic Boom Propagation Code // AIAA Aviation 2019 Forum. 2019. P. 3386.
  8. Pilon A.R. Spectrally accurate prediction of sonic boom signals // AIAA J. 2007. V. 45. № 9. P. 2149-2156.
  9. Jianling Q. et al. Far-field sonic boom prediction considering atmospheric turbulence effects: An improved approach // Chin. J. Aeronaut. 2022. V. 35. № 9. P. 208-225.
  10. Thomas C.L. Extrapolation of wind-tunnel sonic boom signatures without use of a Whitham F-function // NASA SP-255. 1970. P 205-217.
  11. Холодов А.С. Численные методы решения уравнений и систем гиперболического типа // Энциклопедия низкотемпературной плазмы (сер. Б). 2008. Т. 1. Ч. 2. С. 141-174.
  12. Куликовский А.Г., Погорелов Н.В., Семёнов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: Физматлит, 2012.
  13. Самарский А.А., Гулин А.В. Численные методы математической физики: Учеб. пособие по прикл. математике. Науч. мир, 2003.
  14. Зюзина Н.А., Ковыркина О.А., Остапенко В.В. О монотонности схемы CABARET, аппроксимирующей скалярный закон сохранения со знакопеременным характеристическим полем и выпуклой функцией потоков // Матем. моделирование. 2018. Т. 30. № 5. С. 76-98.
  15. Головизнин В.М. и др. Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов // М.: Изд-во Моск. ун-та, 2013.
  16. Jiang G.S., Shu C.W. Efficient implementation of weighted ENO schemes // J. Comput. Phys. 1996. V. 126. № 1. P. 202-228.
  17. Courant R., Friedrichs K., Lewy H. On the partial difference equations of mathematical physics // IBM J. Res. and Development. 1967. V. 11. № 2. P. 215-234.
  18. Pierce A.D., Acoustics A. Introduction to its physical principles and applications // Acoustic. Soc. Am. and Am. Inst. Phys. 1981. P. 122.
  19. United States Committee on Extension to the Standard Atmosphere et al. US standard atmosphere. — National Oceanic and Amospheric [sic] Administration, National Aeronautics and Space Administration, US Air Force, 1962.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences