Localizing the initial condition for solutions of the Cauchy problem for the heat equation
- Authors: Konenkov A.N.1
-
Affiliations:
- Yesenin Ryazan State University
- Issue: Vol 64, No 3 (2024)
- Pages: 514-525
- Section: Mathematical physics
- URL: https://rjonco.com/0044-4669/article/view/665097
- DOI: https://doi.org/10.31857/S0044466924030112
- EDN: https://elibrary.ru/XFZFZD
- ID: 665097
Cite item
Abstract
The Cauchy problem for the heat equation with zero right-hand side is considered. The initial function is assumed to belong to the space of tempered distributions. The problem of determining the support of the initial function from solution values at some fixed time T > 0 is studied. Necessary and sufficient conditions for the support to lie in a given convex compact set are obtained. These conditions are formulated in terms of the solution’s decay rate at infinity. A sharp constant in the exponential for the Landis–Oleinik conjecture on the nonexistence of fast decaying solutions.
Full Text

About the authors
A. N. Konenkov
Yesenin Ryazan State University
Author for correspondence.
Email: an.konenkov@gmail.com
Russian Federation, ul. Svobody, 46, Ryazan, 390000
References
- Прилепко А.И. Обратные задачи теории потенциала (эллиптические, параболические, гиперболические уравнения и уравнения переноса) // Матем. заметки. 1973. Т. 14. № 5. С. 755–767.
- Prilepko A.I., Orlovsky D.G., Vasin I. A. Methods for Solving Inverse Problems in Mathematical Physics. Marcel Dekker, N.Y., 2000. 750 p.
- Прилепко А.И., Костин А.Б., Соловьёв В.В. Обратные задачи нахождения источника и коэффициентов для эллиптических и параболических уравнений в пространствах Гёльдера и Соболева // Сиб. журнал чистой. и прикл. матем. 2017. Т. 17. № 3. С. 67–85.
- Ландис Е.М., Олейник О.А. Обобщенная аналитичность и некоторые связанные с ней свойства решений эллиптических и параболических уравнений // Успехи матем. наук. 1974. Т. 29. Вып. 2. С. 190–206.
- Wang W., Zhang L. Backward uniqueness of Kolmogorov operators // Methods Appl. Anal. 2013. V. 20. No. 1. P. 79–88.
- Escauriaza L., Kenig C.E., Ponce G., Vega L. Decay at infinity of caloric functions within characteristic hyperplanes // Math. Res. Lett. 2006. V. 13. No. 2–3. С. 441–453.
- Nguyen T. On a question of Landis and Oleinik // Trans. Amer. Math. Soc. 2010. V. 362. P. 2875–2899.
- Wu J., Zhang L. The Landis-Oleinik conjecture in the exterior domain // Adv. Math. 2016. V. 302. P. 190–230.
- Евграфов М.А. Аналитические функции. М.: Наука, 1991. 447 с.
- Matsuzawa Т. A calculus approach to hyperfunctions I // Nagoya Math. J. 1987. V. 108. P. 53—66.
- Matsuzawa Т. A calculus approach to hyperfunctions II // Trans. Amer. Math. Soc. 1989. V. 313. No. 2. P. 619–655.
- Matsuzawa T. A calculus approach to the hyperfunctions III // Nagoya Math. J. 1990. V.118. P. 133–153.
- Suwa M. A characterization of distributions of exponential growth with support in a regular closed set // Complex Var. Elliptic Equ. 2014. V. 59. No 10. P. 1418–1435.
- Suwa M., Yoshino K. A Characterization of Tempered Distributions with Support in a Cone by the Heat Kernel Method and its Applications // J. Math. Sci. UniV. Tokyo. 2004. V.11. P. 75–90.
- Chung S.-Y., Lee S.-M. The Paley-Wiener theorem by the heat kernel method // Bull. Korean Math. Soc. 1998. V. 35. No. 3. P. 441–453.
- Hörmander L. The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis. Springer Verlag, 1990. 440 p.
- Владимиров В.С. Уравнения математической физики. М.: Наука, 1981. 512 с.
- Andrews B., Hopper C. The Ricci Flow in Riemannian Geometry: A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem. Lecture Notes in Mathematics. Vol. 2011. Springer, Heidelberg, 2010. 266 p.
- Schneider R. Convex Bodies: The Brunn–Minkowski Theory. Cambridge Univ. Press, Cambridge, 2013. 752 p.
Supplementary files
