Study of Secular Perturbations in the Restricted Three-Body Problem of Variable Masses Using Computer Algebra

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A nonstationary restricted three-body problem for variable masses is considered taking into account the reactive forces arising due to anisotropic variation of masses of the bodies. It is assumed that the bodies are spherically symmetric and interact in accordance with Newton’s law of gravitation. On the basis of the equations of motion of the bodies in the relative system of coordinates, differential equations of aperiodic motion along quasi-conic sections in terms of osculating elements are derived. Equations determining the secular perturbations of the orbital elements are derived in the case of small eccentricities and inclinations of orbits. All symbolic computations are performed using Wolfram Mathematica.

Sobre autores

A. Ibraimova

Al-Farabi Kazakh National University; Fesenkov Astrophysical Institute

Email: ibraimova@aphi.kz
050040, Almaty, Kazakhstan; 050020, Almaty, Kazakhstan

M. Minglibayev

Al-Farabi Kazakh National University; Fesenkov Astrophysical Institute

Email: minglibayev@gmail.com
050040, Almaty, Kazakhstan; 050020, Almaty, Kazakhstan

A. Prokopenya

Warsaw University of Life Sciences

Autor responsável pela correspondência
Email: alexander_prokopenya@sggw.edu.pl
02-776, Warsaw, Poland

Bibliografia

  1. Omarov T.B. (Ed.) Non-Stationary Dynamical Problems in Astronomy. N.Y.: Nova Sci. Publ., 2002.
  2. Bekov A.A., Omarov T.B. The theory of orbits in non-stationary stellar systems // Astron. Astrophys. Transact. 2013. V. 22. № 2. P. 145–153.
  3. Черепащук А.М. Тесные двойные звезды. Ч. II. М.: Физматлит, 2013. 572 с.
  4. Eggleton P. Evolutionary processes in binary and multiple stars. Cambridge Univ. Press, 2006. 332 p.
  5. Luk’yanov L.G. Dynamical evolution of stellar orbits in close binary systems with conservative mass transfer // Astron. Rep. 2008. V. 52. № 8. P. 680–693.
  6. Минглибаев М.Дж. Динамика гравитирующих тел с переменными массами и размерами. LAMBERT Acad. Publ., 2012. 229 с.
  7. Прокопеня А.Н., Минглибаев М.Дж., Маемерова Г.М. Символьные вычисления в исследованиях проблемы трех тел с переменными массами // Программирование. 2014. Т. 40. № 2. С. 51–59.
  8. Minglibayev M.Zh., Mayemerova G.M. Evolution of the orbital-plane orientations in the two-protoplanet three-body problem with variable masses // Astron. Rep. 2014. V. 58. № 9. P. 667–677.
  9. Minglibayev M.Zh., Prokopenya A.N., Mayemerova G.M., Imanova Zh.U. Three-body problem with variable masses that change anisotropically at different rates // Math. Comp. Sci. 2017. V. 11. № 3–4. P. 383–391.
  10. Прокопеня А.Н., Минглибаев М.Дж., Шомшекова С.А. Применение компьютерной алгебры в исследованиях двухпланетной задачи трех тел с переменными массами // Программирование. 2019. Т. 45. № 2. С. 58–65.
  11. Minglibayev M., Prokopenya A., Shomshekova S. Computing perturbations in the two-planetary three-body problem with masses varying non-isotropically at different rates // Math. Comp. Sci. 2020. V. 14. № 2. P. 241–251.
  12. Wolfram S. An Elementary Introduction to the Wolfram Language. Champaign, IL: Wolfram Media, 2015. 324 p.
  13. Прокопеня А.Н. Решение физических задач с использованием системы Mathematica. Брест: БГТУ, 2005. 260 с.
  14. Minglibayev M.Zh., Omarov Ch.T., Ibraimova A.T. New forms of the perturbed motion equation // Rep. Nation. Acad. Sci. Republ. Kazakhstan. 2020. V. 2(330). P. 5–13.
  15. Мещерский И.В. Работы по механике тел переменной массы. М.: Гос. изд-во тех.-теор. лит-ры, 1952. 281 с.
  16. Дубошин Г.Н. Небесная механика. Основные задачи и методы. М.: Наука, 1975. 799 с.
  17. Рой А.Э. Движение по орбитам. М.: Мир, 1981. 544 с.
  18. Себехей В. Теория орбит: ограниченная задача трех тел. М.: Наука, 1982. 656 с.
  19. Brouwer D., Clemence G.M. Methods of Celestial Mechanics. N.Y.: Acad. Press, 1961. 601 p.
  20. Шарлье К. Небесная механика. М.: Наука, 1966. 628 с.
  21. Murray C.D., Dermott S.F. Solar system dynamics. Cambridge University Press, New York, 1999. 592 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © А.Т. Ибраимова, М.Дж. Минглибаев, А.Н. Прокопеня, 2023